真核生物的基因组由基因和基因间区组成。
Eukaryotic genomes are composed of individual genes and their intergenic regions.
摘要多胺(腐胺、精胺、亚精胺等)是原核生物和真核生物的生长因子。
Abstract: Polyamines (putrescine, spermidine, spermine) are growth factors in both prokaryote and eukaryote.
此外,它总结了搜索原核生物的生物体方面和真核生物的染色体方面的结果。
Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes.
摘要 :多胺(腐胺、精胺、亚精胺等)是原核生物和真核生物的生长因子。
Abstract : Polyamines(putrescine, spermidine, spermine) are growth factors in both prokaryote and eukaryote.
我们仍然需要解释的是更特化的真核生物的磷酸化途径是怎么进化而来并取代了细菌的系统。
What still needs to be explained is how the more typical eukaryotic phosphorylation cascades evolved and came to replace the bacterial systems.
真核生物的基因组dNA连同带正电荷的组蛋白和其它核蛋白组成了染色质。
The genomic DNA of eukaryotes together with positively charged histone proteins and other nuclear proteins comprises chromatin.
原核生物的基因与真核生物的基因在组织形式和表达方式方面有哪些主要的区别?
What are the most significant differences between the organization and expression of prokaryotic genes and eukaryotic genes?
很多高等和低等真核生物的糖蛋白是以糖基磷脂酰肌醇(GPI)锚定的方式被连接在质膜上。
Many glycoproteins of lower and higher eucaryotes are attached to the plasma membrane by means of a glycosylphosphatidylinositol(GPI) .
叶绿体是植物细胞内的一种重要细胞器,它起源于早期具有光合能力的原核生物与真核生物的内共生事件。
Plastids are essential organelles of plant cells and it is believed that plastids have arisen from an endosymbiotic event between a protoeukaryote and a photosynthetic prokaryote.
线粒体是真核生物的重要细胞器之一,它在生物的能量转化中起重要作用,因此一直是人们研究的重要领域。
Mitochondrion is one of significant organelles of eukaryotic biology and plays an important role in the conversion of energy, so it is one of main fields people are interested.
遗传密码一度被视为所有生物皆同,今已发现在特定生物体中和某些真核生物的粒线体中有稍微不同的情况。
Once thought to be identical in all forms of life, the genetic code has been found to vary slightly in certain organisms and in the mitochondria of some eukaryotes.
在DNA甲基化的胞嘧啶碱基在许多真核生物的表观遗传调控提供了一层正常的生物学和疾病有着重要的意义。
Methylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease.
这种病毒可能具有某种独特的结构,这种结构是能够影响细菌与真核生物的病毒所不具有的——它不得不像其感染的生物体一样,能够在同样极端的环境中生存。
This virus may have a unique structure not found in viruses affecting bacteria and eukaryotes-it has to be able to survive in the same extreme environment as the organism it infects.
组蛋白 H3与H2A,H2B,H4 共同构成了真核生物核小体的八聚体核心。
Histone H3 along with H2A, H2B, and H4 form the eukaryotic nucleosome octamer core.
莱恩和马丁总结而这很可能解释为什么复杂的生命——真核生物——在地球的历史上仅进化了一次。
And that, Lane and Martin conclude, may well explain why complex life — eukaryotes — only evolved once in all of Earth's history.
线粒体给予真核生物每个基因四或者五个数量级多的能源,这使他们能够穿过鸿沟的墙壁,打开直通道。
Mitochondria give eukaryotes four or five orders of magnitude more energy per gene, and that enabled them to tunnel straight through the walls of the chasm.
我们有的一切都属于我们原核生物的祖先,所以我们继续在真核生物中发现原核生物系统并不新鲜;实际上,如果我们没发现那才奇怪呢。
We owe everything to our prokaryotic ancestors and so it is not surprising that we continue to find prokaryotic systems in eukaryotes; in fact, it would be surprising if we did not.
虽然,像细菌一样,古生菌也没有细胞核,但是它们与你我这样的真核生物具有其他共同的特性。
While, like bacteria, archaeans don't have a cell nucleus, they share other traits with eukaryotes like you and me.
最为熟知的应当是真核域,尽管对于地球生物圈而言,它可能并不是最重要的部分。
The most familiar domain, though arguably not the most important to the Earth's overall biosphere, is the eukaryotes.
古生菌还具有完全与细菌和真核生物不同的细胞膜。
Archaeans have cell membranes that are completely different from both bacteria and eukaryotes.
但是,所有这些DNA需要高能耗,大量成本甚至削弱巨大的细菌——阻止它们成为更为复杂的真核生物。
But all this DNA has a big energetic cost that cripples even giant bacteria — stopping them from turning into more complex eukaryotes.
问题是,虽然胞内同生在真核生物中非常常见,这往往造成吞噬其他细胞,但是在较为硬质的细菌难以察觉。
The trouble is that, while cells within cells are common in eukaryotes, which often engulf other cells, they're vanishingly rare in more rigid bacteria.
卷曲藻可能是一个菌落,或者一种真核生物——其包裹在细胞膜内的细胞功能已经出现分化的生物体。
Grypania may have been either a bacterial colony or a eukaryote - an organism with specialized cells, enclosed in a membrane.
“这给了真核生物基因原料,使它们能够积累新的基因。从规模上来讲,重大基因家族和调节系统对于细菌来讲是完全无法负担的”莱恩博士说。
"This gives eukaryotes the genetic raw material that enables them to accumulate new genes, big gene families and regulatory systems on a scale that is totally unaffordable to bacteria," said Dr Lane.
但什么东西可以使真核生物积聚如此之多、甚至有些多余的基因和蛋白质?
But what enabled eukaryotes to accumulate all these extra genes and proteins?
但需要特别注意的是:他只是统计了真核生物,也就是那些细胞相对复杂的动物,而把细菌以及古生菌排除在外了。
But there are some important caveats: it counts only the eukaryotes, that is, critters with relatively complex cells.
原核生物与真核生物之间最大也是最主要的区别就在于真核细胞在特殊的代谢活动发生的地方包含了拥有膜包围的间隔间。
The major and extremely significant difference between prokaryotes and eukaryotes is that eukaryotic cells contain membrane-bound compartments in which specific metabolic activities take place.
Giardia和动物以及真菌几乎没什么历史渊源,有人认为它与最初的古真核生物很相似。
Giardia is very distantly related to animals and fungi, and some think it resembles the very first eukaryotes.
争论的结果不仅仅影响我们对早期真核生物进化的理解,还影响我们对贾第虫属生物学的观点。
The outcome of this debate affects not only our understanding of early eukaryotic evolution, but also our view of Giardia biology.
这并不能排除贾第虫属和副基总目的早期分化,回答这样的问题需要知道真核生物树的根在哪里,这是个难题。
This does not preclude an early divergence for both Giardia and parabasalids, for this depends on where the root of the eukaryotic tree lies, which is difficult to resolve.
应用推荐