• 采用传统灰色GM(1,1)模型预测道路交通事故随机波动性较大数据存在拟合较精度不足等问题。

    Random and volatile data of road traffic accidents show poor fitness and low accuracy if forecast by means of the traditional grey model GM (1, 1).

    youdao

  • 这种模型适合长期随机波动性较大数据序列预测

    This model is not suited to forecast the accidents in long term with randomness and great changed data.

    youdao

  • 特别地这种模型预测结果其它随机波动性较大数据模型预测结果精确多。

    Particularly, the obtained results are more precise than those by other models for data sequences with heaVy random fluctuation.

    youdao

  • 基础利用随机波动模型收益率波动性特征进行合,对拟合优度进行分析。

    Based on this we simulate the volatility features of the two kinds of yield rate time series and analyze their fitting results using the stochastic volatility models.

    youdao

  • 并且以郑州市降雨量预测作为实例证明灰色马尔可夫预测模型对于随机波动性较大数据预测具有较高精度

    The example shows that the grey Markov prediction SCGM(1,1) model can have high prediction precision for the random and fluctuating data series.

    youdao

  • 研究负荷时间序列波动性考虑方差时变特征提出基于随机波动SV模型短期负荷预测方法

    The volatility of load time series is analyzed, and the short-term load forecasting based on SV(Stochastic Volatility) models is presented with the consideration of the time-varying characteristics.

    youdao

  • 研究负荷时间序列波动性考虑方差时变特征提出基于随机波动SV模型短期负荷预测方法

    The volatility of load time series is analyzed, and the short-term load forecasting based on SV(Stochastic Volatility) models is presented with the consideration of the time-varying characteristics.

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定