二重对数是对数的积分。
实际上,要拆成两个不同的积分。
So, in fact, I have to break this into two different integrals.
那就是,昨天学的那个万恶的积分。
And that is, again, the evil integral that we had yesterday.
那么这也就成为从a至b的积分了。
那么你要做一个以t为变量的积分。
我来计算ydx+xdy的积分。
由于对称性,y的积分值为。
事实上,这就变为t从0到1的积分。
That just becomes the integral from, well, I guess t goes from zero to one, actually.
我们需要计算通量的积分。
这里的积分常数是什么呢?
这个常数是,开始我们得到的积分常数。
That constant is just the integration constant that we had from the beginning.
为了得到W现在要做,整个过程的积分。
Now I have to do the integral over the entire path to get W.
我们可以做温度的积分。
也就是在某个边界里算dxdy的积分。
So, we should get to something that will be the same integral dx dy.
这就变成了C上的积分。
给出一条曲线,计算沿着这条曲线的积分。
Well, let's say I give you a curve and I ask you to compute this integral.
在这里,是三维区域上的积分。
我不会给出一个完整的积分表的。
简单三角函数的积分是什么意思呢?
这是根据电流对,时间的积分。
This is on the basis of the integral of the current times the time.
从a到b的积分,从a到b的积分。
Integral in going from a to B, integral in going from a to B.
当然,所做的积分是不同的。
称之为在区域D上divdV的积分。
这就是- C3的积分,它沿着相反方向的路径。
That's the integral along minus C3, along the reversed path.
下面应该如何,在这样的曲面上建立通量的积分。
Now, how would we actually set up a flux integral on such a surface.
今天这个是用来求F的法向分量的积分的。
我们继续吧,还有很多其他的积分类型要看。
OK. Let me move on a bit because we have a lot of other kinds of integrals to see.
无论如何,再说一次,从概念上说有三个不同种类的积分。
OK, so anyway, again, conceptually, we have, really, three different kinds of integrals.
还有一个相反的技巧,也就是给出了区域,如何去建立它的积分。
And then there's a converse skill which is given the region, how to set up the integral for it.
还有一个相反的技巧,也就是给出了区域,如何去建立它的积分。
And then there's a converse skill which is given the region, how to set up the integral for it.
应用推荐