电解液储存在容器外然后泵过电池并将化学能转换为电 能。
The electrolyte is stored in an external tank and pumped through the battery’s cells to convert chemical energy into electricity.
通过取样控制电路,利用A/D转换技术,建立了工作电解液闪火电压的计算机自动测试系统。
The computer-aided spark voltage test system for working electrolyte is established with A/D conversion technology and sampling circuit.
无极性(或二极性)电解电容器,可使用在极性转换的回路或直流回路上。
Non-polar (or Bi-polar) capacitors can be used in polaritiy- changing circuits or DC circuits.
此外,还试验了对电极与电解液对转换效率的影响。
Furthermore, the influence of the counter electrodes and electrolytes on the conversion efficiency have been tested.
以液态电解质和凝胶电解质为空穴传输体,分别制备出了光电转换效率超过4.31%和2.75%的染料敏化太阳能电池。
Using a liquid or gel electrolyte as a hole transfer medium, the DSSCs with 4.31 % or 2.75 % global photon-to-electron conversion efficiency was obtained, respectively.
本文研究了可将太阳能转换成电能的液结太阳能电池和可将太阳能转换成化学能的光电解电池。
This paper researched solar cells which can convert solar energy into electricity and photo-electrolysis cell that into chemical energy.
与未加入介孔炭的电解质组装的DSSC相比,电池的光电转换效率提高了30%。
Compare with the cell based on gel electrolyte without mesoporous carbon, conversion efficiency of DSSC was improved 30%.
最后,加入50%乙炔黑的聚苯胺电解质的电池光电转换效率达到了液态电池的48%。
Final ly, the overall energy conversion efficiency of DSSC with PANI50% (in weight) acetylene black electrolyte is 48% of that of liquid DSSC.
发现随着电解质体系粘度的增加,I_3~-离子扩散系数急剧下降,进而在准固念染料敏化太阳能电池的光电转换过程中形成新的速控步骤I_3~-离子的扩散过程。
With the increasing of the viscosity of electrolyte, the diffusion coefficient of I_3 ion decreased rapidly to be a new controlling step in the quasi-solid state dye-sensitized solar cell.
发现随着电解质体系粘度的增加,I_3~-离子扩散系数急剧下降,进而在准固念染料敏化太阳能电池的光电转换过程中形成新的速控步骤I_3~-离子的扩散过程。
With the increasing of the viscosity of electrolyte, the diffusion coefficient of I_3 ion decreased rapidly to be a new controlling step in the quasi-solid state dye-sensitized solar cell.
应用推荐