所以,现在我们确实可以在微流体晶片上,使生物和化学实验室微型化。
So, right now, we can actually miniaturize biological and chemistry laboratories onto microfluidic chips.
从流体微元出发,用计算流体力学(CFD)的方法建立热管生物反应器的传热数学模型。
Using the fluid differential unit, the heat transfer mathematic model of heat pipe bioreactor (HPBR) was established by the calculated fluid hydrodynamics (CFD).
微尺度下流体的流动,在工业、生物工程及电子信息技术有着广泛的应用。
The fluid flow in the micro channel has been widely applied in many fields such as industries, bio-engineering and electronic information technology.
得到的结果对于将所述复合材料在未来的微制造中使用,尤其是用于生物芯片和微流体器件,是非常有前途的。
Results obtained are very promising for the utilization of such composites in future micro-fabrications, especially for the bio-chips and microfluidic devices.
基于MEMS技术的微流体芯片在分析化学和生物医学领域显示了巨大的应用潜力。
Microfluidic chips based on MEMS technology exhibit great potentials in analytical chemistry and biomedical fields.
基于MEMS技术的微流体芯片在分析化学和生物医学领域显示了巨大的应用潜力。
Microfluidic chips based on MEMS technology exhibit great potentials in analytical chemistry and biomedical fields.
应用推荐