目前,SIFT已经被证明鲁棒性最好的局部不变特征描述符。
SIFT has proved to be the most robust local invariant feature descriptor in object recognition and matching.
介绍了基于内容的图像检索的定义以及MPEG - 7中的视觉描述工具,分析了特征描述符的应用。
This paper introduces the definition of the content-based image retrieval and the visual description tools of MPEG-7, and analyzes the application of the feature descriptor.
且获得的图像特征描述符具有旋转、平移、尺度不变性等优点,能够很好地描述图像的形状和空间分布信息。
And the image feature descriptor has a rotation, translation, scaling invariance, etc. it can be a very good to describe the shape and spatial distribution of information.
提取关于坐标旋转不变的特征描述符以及提高特征描述符对噪声的鲁棒性是基于内容三维模型检索技术中有待进一步研究解决的问题之一。
How to extract the rotation invariant feature and improve the stability of the noise is still an unsolved problem of the area of content-based 3d models retrieval.
提取关于坐标旋转不变的特征描述符以及提高特征描述符对噪声的鲁棒性是基于内容三维模型检索技术中有待进一步研究解决的问题之一。
How to extract the rotation invariant feature and improve the stability of the noise is still an unsolved problem of the area of content-based 3d models retrieval.
应用推荐