硬开关(图26所示)几乎不考虑漏源极电压的最小值。
The hard switching approach (as shown in Fig. 26) doesn't consider the minimum drain-source voltage.
图20描述了漏源极电压主要原理产生的电磁干扰频谱。
The spectra of the main elements of the drain-source voltage can be found in Fig. 20.
把这些原理按时序整合呈现出图16所示的典型漏源极电压。
The superposition of all these elements results in a typical drain-source voltage shown in Fig. 16.
这里有两条理由可以解释800伏特漏源极电压波形的两个差异。
This can be explained by two major differences of the 800v drain-source voltage waveform.
漏源极电压(图28)在反射过程结束后并减小到100伏特时场效应晶体管导通。
The drain-source voltage (Fig. 28) starts oscillating at the end of the flyback phase and reaching the minimum of 100V when the MOSFET turns on.
就象漏源极电压的例子那样,用这种方法也可以找出漏极电流的哪一部分对电磁干扰频谱产生影响。
As in case of drain-source voltage this method allows to associate the elements of the drain current waveform with its contribution to the whole spectrum.
降低漏源极直流母线电压影响干扰信号按傅立叶展开式的全部频带。
The decrease of the drain-source voltage or bus voltage affects the entire spectrum evenly according to Fourier theory.
拥有更低峰值电流和场效应晶体管漏源极开通电压的800伏特准谐振设计展示出一次侧传导电磁干扰降低的优势。
The 800v quasi resonant design with lower current peak and lower drain-source voltage during turning on of the MOSFET demonstrates advantages in conducted EMI spectra regarding the primary side.
拥有更低峰值电流和场效应晶体管漏源极开通电压的800伏特准谐振设计展示出一次侧传导电磁干扰降低的优势。
The 800v quasi resonant design with lower current peak and lower drain-source voltage during turning on of the MOSFET demonstrates advantages in conducted EMI spectra regarding the primary side.
应用推荐