我们利用边界层校正法以及微分不等式理论证明了解的存在定理,并构造出其解的一致有效渐近展开式。
Using the method of boundary layer correction and the differential inequality theory, we prove the existence theorem of solutions and construct the uniformly valid asymptotic expansions of.
本文给出了一个关于部分变元渐近稳定性的判定定理,推广了有关文献中的有关结果。
This paper gives one determining theorem for asymptotic stability of partial variables and develops the results recorded in the related papers.
根据定理4.3的推论,原点是渐近稳定的。
By the corollary to Theorem 4.3, the origin is asymptotically stable.
主要讨论了第二积分中值定理“中值点”的渐近性和渐近速度。
This paper discusses the asymptotic rate of "mean value point" in second mean value theorem for integrals.
运用分歧理论,隐函数定理,以及渐近展开的方法,获得了非平凡周期解的存在性。
The existence of co-exist periodic solution is investigated by using the bifurcation theory, the implicit function theorem and the method of asymptotic expansion.
同时在激励函数单调递增的条件减弱的情况下,给出了两条渐近稳定的定理,并给了严格的数学证明。
With the condition of inspirit functions increasing by degrees weakening, two new global asymptotic stable theorems and strict mathematic proof were given.
本文指出了有关微分中值定理“中间点”的渐近性四篇文章的结果中的错误,并给予修正。
This paper points out and revises some errors in the results found in four articles concerning the asymptotic behavior of the "Intermediate points" of the mean value theorem.
讨论了第一类曲线积分中值定理“中间点”的渐近性质,得到了更具一般性的新结果。
This paper is devoted to studying the asymptotic behavior of the intermediate point in the mean value theorem for first form curve integrals. A general result is obtained.
利用不动点理论,给出了一类时滞积分方程渐近概周期解的存在性定理。
Using the theory of fixed point, we give a theorem about the existence of asymptotically almost periodic solution for a class of delay integral equations.
利用李雅普诺夫渐近稳定性定理,很方便地实现了洛沦滋和类洛沦滋系统的混沌自同步。
Using the theory of Lyapunov asymptotic stability, the chaos self synchronization of Lorenz system and analogy Lorenz system are easily realized.
讨论了二元函数中值定理中间值的渐近性质,给出了一个相关反问题的解。
The asymptotic properties of mean value in the mean value of bivariate functions are discussed, a solution is presented for related inverse problem.
得到一个关于脉冲微分方程弱指数渐近稳定的判定定理。
The sufficient conditions of the weak exponential asymptotic stability of impulsive differential system are obtained.
利用泰勒公式,给出中值定理“中值点”渐近性质的一个定量刻画。
Using the Taylor formula, gives the theorem of mean "the value point" an approach nature quota portray.
给出并证明了关于积分第二中值定理“中间点”的渐近性定理。
In this article, the author has proved the theorem of "middle point" in the second integral mean value.
李亚普诺夫稳定性定理保证了闭环系统的稳定性及跟踪误差的渐近收敛。
By using Lyapunov stability theorem, both the stability of closed-loop system and the asymptotical convergence of tracking errors are ensured.
利用多重尺度法和比较定理,研究了初始边值问题解的渐近性态。
By using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the initial boundary value problem is studied.
文章研究了第一型曲线积分中值定理“中间点”的渐近性,获得了一些重要结果,得出它也是定积分中值定理相应结果的推广。
This paper discusses the asymptotic property of the Mid-point of the mean theorem for first form curvilinear integral.
其次在子系统正则的条件下,给出了广义大系统渐近稳定的判定定理,设计了镇定离散广义大系统的反馈律。
The problem of stability and decentralized stabilization for discrete singular large-scale systems with non-causality is solved by Lyapunov approach in this paper.
对积分中值定理中间点的渐近性进行研究,给出了推广的积分第一中值定理的中间点的渐近性的一个公式。
This paper presents a generalization of mean value theorem for integrals and discusses the asymptotic properties of mean value of mean value theorem for integral.
利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。
We present several theorems on the distribution of prime powers. These results play a very important role in providing explicit bounds for the asymptotic existence theorems of RBIBD and PMD.
本文得到全连续算子和锥映象的新的歧点和渐近歧点定理,并指出它们的固有值的某种全局特征。
We get a new theorem of the ambiguous points and a new theorem of the asgmptotic ambiguous point on the condensing mapping, and we point out some global characteristics of their eigenvalues.
给出了在各种情况下积分第二中值定理“中间点”的渐近性的几个结论,相信在积分学中有着很重要的作用。
In this paper, second mean value theorem for integrals is studied, and some results of the inverse problem of the theorem are obtained.
给出了在各种情况下积分第二中值定理“中间点”的渐近性的几个结论,相信在积分学中有着很重要的作用。
In this paper, second mean value theorem for integrals is studied, and some results of the inverse problem of the theorem are obtained.
应用推荐