本文针对一般非线性系统,在渐近稳定的条件下,得到了完全系统的周期解的存在性、唯一性及收敛性。
In this paper, we obtain the existence, uniqueness and the convergence of a periodic solution of the full system for general nonlinear systems under asymptotically stable conditions.
在§3中,研究一般概周期系统,讨论了其概周期解和渐近概周期解与分离性之间的某些关系。
In section 3, the author discusses some relationships among the separabilities and the almost periodic and asymptotically almost periodic solutions of almost periodic system.
针对不存在丢包和存在丢包的情况,通过由采样周期、被控对象与模型参数构造的稳定性判别矩阵给出了使网络控制系统渐近稳定的充分条件。
By constructing a test matrix in terms of the sampling period, the plant controlled and the model parameters, we give a sufficient condition to test the asymptotic stability for the system.
对系数附加条件后,该模型的任意正解渐近稳定地趋于对应周期系统的正周期解。
If the coefficients satisfy additional conditions, every positive solutions of the model asymptotically approach the unique strictly positive periodic solution of the corresponding periodic system.
对系数附加条件后,该模型的任意正解渐近稳定地趋于对应周期系统的正周期解。
If the coefficients satisfy additional conditions, every positive solutions of the model asymptotically approach the unique strictly positive periodic solution of the corresponding periodic system.
应用推荐