如果系数1,然后我们称之为积极的求积公式。
If the coefficients 1, then we call a positive quadrature formula.
边界型求积公式是数值积分法研究方向早就被注意的问题。
The construction of boundary type cubature is a problem that has been noticed for a very long time in numerical integration.
定理2存在着一个独特的准高斯求积公式,这是刚刚高斯求积公式;
Theorem 2 There exists uniquely an quasi-Gaussian quadrature formula, which is just the Gaussian quadrature formula;
边界型求积公式正是仅仅利用被积函数在区域边界上的数值构造的公式。
The boundary type cubature is quite the type of formulae that only use numerical values on the boundary of the domain.
借助降维展开公式,我们对积分构造出具有代数精度的边界型求积公式。
By using the lowering dimensionality expansions, we construct boundary type cubature formulas with the algebraic precision for integrals.
最后讨论了求积公式、归一化、对称化和GPC实验谱图的峰加宽改正问题。
The problem of quadrature formula, normalization, symmetrization and peak spreading correction for experimental GPC chromatograms after partial smoothing or fitting a curve is discussed.
该文给出了一些数值求积公式的渐近性质,这些公式包括求积分的矩形法则、梯形法则和抛物线法则。
This paper gives asymptotic properties of some numerical integral formulas, these formulas include rectangle rule, trapezoid rule and parabolic rule.
对于定积分近似计算中常使用的经典SIMPSON求积公式介绍一种新的简洁的证明方法并给出误差的最佳估计。
We introduced a new and simple proof of the classical SIMPSON quadrature formula which is frequently applied in calculating definite integrals and best estimation of error is obtained.
提出一个数字求积仪安置值m的通用公式。
This paper presents an universal formula of assign m in the digital planimeter.
提出一个数字求积仪安置值m的通用公式。
This paper presents an universal formula of assign m in the digital planimeter.
应用推荐