主要工作和结论为:(1)分析声场频率、声压和气泡初始半径对气泡动力学过程的影响。
The following work has been done:(1) Analyzing the influence of acoustic frequency, acoustic pressure amplitude and initial bubble radius towards bubble dynamics respectively;
絮体与微气泡间的相对尺度和流态的不同会有不同的碰撞机制,相应的动力学方程式与絮体的分形维数也有不同的关系。
The different collision mechanisms and relations to fractal dimensions were shown in flotation processes with different relative sizes between flocs and micro-bubbles and their movement conditions.
以灰熔聚流化床粉煤气化工艺为背景,概括了射流床内床层动力学、射流特性以及密相中的气泡性质的研究进展。
In terms of ash agglomerating fluidized bed fine coal gasification process, the fluid dynamics, jet behavior and bubble property are reviewed in this paper.
缩泡动力学模型能得到整个反应时间内的气泡内压、水合物外层半径和气泡半径与时间的关系。
The shrinkage bubble dynamics model can gain the relations of the bubble internal pressure, the outer radius of the hydrate and the bubble radius with the time during the whole reaction time.
因此,全面、深入研究蛋白质气泡在非牛顿流体中的动力学特性,对于更好地拓宽蛋白质气泡的应用领域具有十分重要的意义。
So the comprehensive and in-depth study on the dynamic performance of protein bubble in non-Newtonian fluid would be most meaningful for maximizing its efficiencies.
而蛋白质气泡在流体中的动力学特性又会直接影响气泡在流体中的存活时间、分布均匀性以及整个流体的稳定性。
Further, the dynamic performance of bubble will affect the survival time and the uniformity of bubble in fluid, and also affect the stability of system composed of fluid and protein bubbles.
而蛋白质气泡在流体中的动力学特性又会直接影响气泡在流体中的存活时间、分布均匀性以及整个流体的稳定性。
Further, the dynamic performance of bubble will affect the survival time and the uniformity of bubble in fluid, and also affect the stability of system composed of fluid and protein bubbles.
应用推荐