在介质阻挡气体放电等离子体条件下,研究阻挡介质特性对NO脱除的影响规律。
The impact of dielectric characteristics on NO removal is studied under the presence of dielectric barrier discharge plasma.
结果表明,等离子体在壁处的反射系数约为0.59,变换工作气体后,在第一次放电的等离子体中,由壁释放的同位素含量约占65%。
The results show that the reflection coefficient near the wall is about 0. 59, and in the plasma of the first discharge after a gas change, the wall-released isotope amount to 65% .
气体放电中的各种等离子体鞘层。
利用气体放电产生的等离子体朗缪尔流效应来使敏感元件产生一定速度的运动,不需另外的驱动元件。
Plasma Langmuir flow effect produced by gas discharge was used to make sensitive component move at a certain velocity without further drive part.
指出等离子体净化和脉冲电晕放电是净化有害气体的较好方法。
It is pointed out that the plasma cleaning and the pulsed corona discharge are the better methods to get rid of harmful gases.
推导了双混合气体和具有潘宁效应的双混合气体的放电等离子体电子温度的理论计算公式。
The formulas are derived for electron temperature in the plasma of a discharge for a binary mixture gas and a mixture gas possessing Penning effect.
探讨了等离子体处理时间、放电功率、气体压强及接枝单体浓度、接枝反应时间、温度等各因素对接枝率的影响规律。
The influences of the treating time, power, treating pressure of plasma, concentration of monomer, reaction temperature and time on the grafting rate are discussed.
使用光强标定的发射光谱(AOES)测量了CHF3/C6H6混合气体的微波电子回旋共振(ECR)放电等离子体中基团的分布状态。
The distribution of radicals in CHF3/C6H6 electron cyclotron resonance (ECR) plasma was investigated by an actinometric optical emission spectroscopy (AOES).
本文首先对比研究了两种以氧气作为放电气体的等离子体:电感式射频辉光等离子体(RF)和介质阻挡放电等离子体(DBD)氧化纳米炭黑的工艺。
Firstly, it was contrastively studied that the nanometer carbon black was oxidized by two kind of oxygen plasma: radio frequency discharge (RF) and dielectric barrier discharge (DBD).
所设计的气路转换系统和同心石英等离子体炬管等,使扫描式分子气体IC P光谱仪既可用于分子气体icp放电,又可用于氩icp放电。
The designed quartz concentric torch and the gaseous transfer system are suitable for both argon ICP discharge and the molecular gases ICP discharges.
由于传统的DBD在气体电离方法方面存在许多问题,致使大气压条件下放电空间内气体的电离度很低,无法满足非平衡等离子体化学工程的需要。
There are many unsolved problems in conventional DBD gas ionization technique, resulting in lower gas ionizability, which cannot be used in non-equilibrium plasma chemistry.
真空室内的气体等离子体可由热灯丝或射频放电产生,4另外还配置了4个金属等离子体源、两套磁控溅射靶和冷却靶台。
The plasma can be 4 generated by hot-cathode discharge or RF discharge of gas. In addition, the device has four metal plasma sources, two magnetron sputtering targets, cold and hot target supports.
该等离子体显示装置被构造为具有:等离子体显示面板,通过利用气体放电来显示可视图像;
The plasma display device is structured to have: a plasma display panel which displays visual images via making use of aerial discharge;
该等离子体显示装置被构造为具有:等离子体显示面板,通过利用气体放电来显示可视图像;
The plasma display device is structured to have: a plasma display panel which displays visual images via making use of aerial discharge;
应用推荐