开发了一种基于有限差分算法的卷取温度控制模型,并介绍了时间和空间步长参数的选取方法。
The control model for coiling temperature based on finite difference method is developed, and how to choose the time and space step is introduced.
与其他分布参数模型的处理方法相比较,该文的仿真方法不仅具有较高的运算精度,而且在较大的时间步长下也有非常好的数值稳定性。
In comparison with other distributed parameter models, the calculation result of this model has showed that it has a quality of higher precision with numerical stability even at a big time step size.
分析了功控调整步长、TPC差错、TPC时延和SIR估计等参数对系统性能的影响;
The effect of power control parameters including step size, TPC error, TPC delay and estimate SIR length on system performance is analyzed.
从影响跑速的基本因素和支撑阶段的运动学参数两个方面对中长跑途中跑适宜步长进行了分析。
The paper explains a term-stride length of middle-distance run from two aspects, one is the basic factors infect on speed, the other is kinematics parameter of support period.
研究了空间剖分步长、初始晶核半径、各向异性系数和过冷度对模拟结果的影响,确定了这些关键参数的取值范围。
The dependence of simulation results on the space step, the initial nucleus radius, anisotropy and undercooling studied, and how to choose the values of these parameters is settled.
根据协调映射及相关理论,建立了原网格曲面和参数域曲面的路径间距及步长的对应关系。
According to conformal map and relative theory, the relation of path interval between triangular meshes and parametric region is built.
本文给出了一种新型自适应曲线插补方法。即根据弓高误差自动调整进给步长,同时将轮廓误差限定在允许范围之内的参数曲线实时插补方法。
A new adaptive method about curve interpolation is proposed, which can automatically adjust step-length of motion and confine the contour error within a given tolerance.
同时还得到了两种变步长LMS均衡算法中的参数和均衡器输出误码率的关系。
The relations between parameters of two variable step size LMS algorithms and BER are obtained.
为获得较好的随机共振效果,采用自动搜索确定最佳计算步长和双稳系统形状参数的策略。
An automatic searching strategy for optimal the algorithm step and the bistable system parameters was adopted in order to achieve the maximum SR effect.
介绍用双三次参数曲线拟合曲面、平头铣刀的直径、铣削的步长及行距选择、刀位点和刀轴矢量的计算。
It introduced imitating surfaces with bicubic parametric curves, feed length, cutter location and vector of cutter location.
算例结果表明时间步长内结构的计算运动参数不协调,是时程积分结果误差的一个主要原因。
The study suggests that the mal-coordination of the motion parameters within the time-step is the major factor that accounts for the result errors of step-by-step integral for dynamic equation.
只有网格步长足够小也就是环境参数很详细时,云模型和数据场计算的结合才能充分发挥特色。
According to the different step size it is fount that field calculation results is no different from the results without the use of cloud model when grid step size too rough.
验证了新算法的步长值优于现有算法的步长值,从而进一步解决了生成参数曲线的取点过密问题。
It is proved that the step-length of the new algorithm is better than those of the existing ones, so that the problem of oversampling in rasterizing parametric curves is solved better.
方法为了避免浮点数溢出,我们由浮点的最大值作为输入参数,然后根据积分级数N计算出积分步长。
Methods To avoid floating point overflow, we calculate the input value according to the maximum of floating-point number and get corresponding integration step at a given level N.
通过阅读文献资料、数据对比等方法,对卡尔、刘易斯百米跑的反应时、步长、步频、最大参数等技术参数进行剖析。
The parameters, such as the maximum speed, stride frequency, stride length, split time and reaction time of the first six runners, are analyzed and studied.
通过阅读文献资料、数据对比等方法,对卡尔、刘易斯百米跑的反应时、步长、步频、最大参数等技术参数进行剖析。
The parameters, such as the maximum speed, stride frequency, stride length, split time and reaction time of the first six runners, are analyzed and studied.
应用推荐