得到一些正周期解存在的充分条件。
Some sufficient conditions for the existence of positive periodic solutions are obtained.
利用重合度理论证明系统正周期解的存在性。
The existence of the strictly positive periodic solution of the system is proved by using coincidence degree.
利用重合度理论证明系统正周期解的存在性。
Some results on the existence and multiplicity of positive periodic solutions are derived.
在这篇文章中,我们主要研究奇异方程的正周期解问题。
In this paper, we study mainly positive periodic solution to singular equations.
对系数附加条件后,该模型的任意正解渐近稳定地趋于对应周期系统的正周期解。
If the coefficients satisfy additional conditions, every positive solutions of the model asymptotically approach the unique strictly positive periodic solution of the corresponding periodic system.
利用拓扑度理论中的连续定理以及M -矩阵的性质获得了该系统正周期解存在的充分条件。
By using the continuation theorem of topology degree theory and properties of nonsingular M-matrix, we obtain sufficient conditions for the existence of positive periodic solutions of this system.
证明了在某些条件下系统是持续的,建立了关于相应周期系统正周期解的存在性与稳定性的条件。
Conditions are established for the existence and the stability of the positive periodic solutions with respect to the corresponding periodic system.
利用重合度理论建立了一类周期中立型时滞捕食者-食饵系统正周期解的全局存在性的充分条件。
Sufficient conditions are obtained for the global existence of a positive periodic solution of periodic neutral delay predator-prey system by using the method of coincidence degree theory.
利用重合度的连续性定理,研究了一类多种群脉冲混合系统正周期解的存在性,得到了该系统存在正周期解的充分判据。
The study on the mixed system of meat - ISP showed a new type of protein was formed at about 60C with the interaction between the two proteins.
作为这些准则的应用,一系列特殊的单种群增长的时滞系统被研究,关于种群的持久性和系统的正周期解的存在性的一系列具体的判别准则被建立。
As application of these results, the permanence and existence of positive periodic solutions for a series of special single-species growth systems with delays are obtained.
本文进一步研究了这些系数随时间变化而趋于一个定值或在某一常数附近作周期性振荡,并给出容易检验存在唯一全局渐近稳定的正周期解的条件。
In this article we further study the cases in which the coefficients of the model vary with time and tend to definite values or vibrate periodically near certain constants and...
本文利用不动点理论,给出了一类非线性延迟积分方程正的概周期型解的存在性条件。
In this paper, we give the conditions of existence of positive almost periodic type solutions for some nonlinear delay integral equations.
应用该定理,给出了一类时滞积分方程的正概周期解的存在性结果。
As an application, some existence results of positive almost periodic solutions for delay integral equations are obtained, which generalize the existing results.
利用不动点理论,给出了一类非线性延迟积分方程正的渐近概周期解存在的充分条件。
Using fixed point theorems, in this paper we give sufficient conditions of the existence of asymptotically-almost-periodic solution for some nonlinear delay integral equations.
利用不动点理论,给出了一类非线性延迟积分方程正的渐近概周期解存在的充分条件。
Using fixed point theorems, in this paper we give sufficient conditions of the existence of asymptotically-almost-periodic solution for some nonlinear delay integral equations.
应用推荐