本文给出构造紧支撑三元不可分正交尺度函数和正交小波函数的新算法。
In this paper, we give a new algorithm of construction compactly supported trivariate orthogonal scaling function with dilation matrix 21, at the same time, the correspond wavelets are also given.
本文给出构造矩阵伸缩为2i的紧支撑二元正交尺度函数的一种算法,得到相应的小波函数。
In this paper, we give an algorithm of construction compact support bivariate orthogonal scaling function whose dilation matrix is 2i, the correspond wavelets are also offered.
结果表明,如果我们想从多尺度分析出发构造正交小波,那么该多尺度分析必须有正交尺度函数。
This result shows that if we want to construct orthonormal wavelets from a multireso- lotion, then that multiresolution must have an orthonormal scaling function.
构造的正交尺度函数和小波的两尺度方程中只包含4项,因而相应的分解和重构算法也只有4项。
There are only 4 terms in the corresponding refinement equations of the orthogonal scaling functions and the wavelets (and so do the decomposition and reconstruction algorithms).
其次,证明了该尺度函数满足正交性﹑插值性﹑再生性。
Secondly, the scale function was proved satisfy orthonormal property interpolate property and reproducing property.
然后利用正交多分辨率分析,给出由该尺度函数构造的一类频带有限的M进制正交小波函数的必要条件。
Next, by the orthogonal multiresolution analysis, the necessary conditions of a kind of M-band band-limited orthogonal wavelet function constructed by the scaling function are proposed.
本文对已有的“协因子”算法进行了改进,并构造了二阶有限元双正交多尺度函数。
So, this method is modified in the article, and the finite element biorthogonal multiwavelets are constructed.
基于多尺度函数面具的一种特定形式,提出构造一类具有正交、对称、紧支撑的多尺度函数的方法。
Based on a special form of matrix mask, a method of constructing symmetric orthogonal compactly support is presented.
使用小波包基函数作为子载波的好处是,它具有两条十分突出的正交性质:相邻(尺度)正交性和平移正交性。
The advantage of wavelet packet is because of its two important properties that depend on orthogonality: the scaling function and wavelet are orthogonal over both scale and translation.
使用小波包基函数作为子载波的好处是,它具有两条十分突出的正交性质:相邻(尺度)正交性和平移正交性。
The advantage of wavelet packet is because of its two important properties that depend on orthogonality: the scaling function and wavelet are orthogonal over both scale and translation.
应用推荐