以《几何原本》为代表的欧氏几何是古希腊文明的一个火车头,是古代数学公理化方法的一个辉煌成就。
Euclidean geometry is not only the leader of the civilization of ancient Greek but also the brilliant achievements of axiomatic approach in mathematics.
本文在比较分形几何和欧氏几何的基础上,试图从分形的“自相似”角度来探究建筑空间形式的相关问题。
Based on the comparison of fractal geometry and Euclidean geometry, on the basis of geometric from fractal "similar" perspective building space forms of related problems.
我们都学习过,欧几里得几何中对勾股定理的证明方法,从繁杂的欧氏几何的公理开始,邦,邦邦,邦邦,邦邦。
And we learned how to prove the Pythagorean Theorem in Euclidean geometry, starting with the various axioms in Euclidean geometry, ba, ba-ba, ba-ba, ba-ba, ba bum.
在概括性地阐述分形理论、欧氏几何造型方法及离心式滚磨光整加工方法的基础上,重点分析了L系统分形造型方法和离心式滚磨加工过程中磨块运动的分形特性。
On the basis of generalizing the fractal theory, Euclid geometry mould and the discentral barrel finishing, L-System and the fractal characteristics of the grinder movement is analyzed.
通过对欧氏第五公设的试证,引入罗氏几何与黎氏几何。
We introduce the Lobachevskian geometry and the Ricmanian geometry by proving the Euclidean of the fifth postulate.
经典微分几何研究三维欧氏空间中曲线曲面理论,其最具有特色的研究是主曲率函数满足某些关系的魏因加吞曲面。
In the classical differential geometry which deals with the theory of curves and surfaces of three dimensional Euclidean space, the most distinctive study is the Weingarten surface.
镜面反射是欧氏空间中一类很重要的线性变换,在几何空间中有着极其形象的解释。
The specular reflection is a very important linear transformation in Euclidean space, and it has a special geometrical explanation in geometrical space.
镜面反射是欧氏空间中一类很重要的线性变换,在几何空间中有着极其形象的解释。
The specular reflection is a very important linear transformation in Euclidean space, and it has a special geometrical explanation in geometrical space.
应用推荐