设计高效的模乘算法也成为密码应用领域关注和研究的焦点之一。
To design some efficient modular multiplication algorithms has now been one of focus of research and study of application field.
研究中提出了新的基于正规基和正则基的比特串行模乘算法实现方案。
A new bit-serial modular multiplication based on optimal normal and shifted canonical was presented.
根据平行并行乘法器,设计了适用于模乘运算的一维阵列组合乘法器。
The one-array combinative multiplication was designed on the basis of the parallel multiplication.
针对椭圆曲线密码算法中有限域模乘运算的需求,提出其专用模乘指令。
Analysis of finite field modular multiplication requirement of Elliptic Curve Cryptography (ECC), the application specific instruction for modular multiplication computation is designed in this paper.
模幂算法采用从右到左扫描指数的方法,可以使得两次模乘运算同时进行。
Modul ar exponentiation algorithm scans encryption from right to sot, so t wo modular multiplications can be processed parallelly.
在VLSI设计上实现了模乘和求逆运算的硬件复用,大幅度地降低了成本。
In VLSI design, the hardware reuse technique is employed to save area costs.
算法的硬件结构由模乘控制器、模幂控制器、数据寄存器和模乘运算单元构成。
The hardware architecture is made up of modular controller, modular exponentiation controller, data register, and modular multiplication operation units.
有限域运算的实现中模乘运算使用改进的串行结构以达到面积与速度的合理匹配。
The implementation of operators for modular multiplication over the Finite Fields adopts an improved serial structure, considering the trade-off between size and speed.
并将模加、模乘、模平方运算集中设计成了一个多功能运算器,使控制电路更加简单。
The modular addition, modular multiple and modular square are placed in the ALU to simplify the controller.
本文在分析比较现有快速模乘算法的基础上,提出了一个基于滑动窗口的快速模乘算法。
In this paper, based on the analyzing and comparing some modular multiplication algorithms, we present a new modular multiplication algorithm on sliding window.
实验结果表明,该有限域模乘指令和硬件运算单元具有较高的执行效率和较好的灵活性。
Experimental results show that, the modular multiplication instruction and hardware unit presented in this paper can achieve high performance and guarantee high flexibility.
设计中采用了按字运算的模乘算法,使本设计具有很好的可扩展性,它可以完成任意位数的模乘运算。
With the help of word-based modular multiplication algorithm, the proposed multiplier is able to work with any precision of the input operands.
在TMS320C 6201上执行113位和191位算法证实确实提高了模乘和模逆两种运算的速度。
It is proved that the speeds of modular multiplication and inversion method are both improved by performing 113 bits and 191 bits methods on TMS320C6201.
根据模平方运算自身的特点,选用了多项式基进行运算,使模平方运算在一个时钟周期完成,比直接调用模乘运算提高一半以上的速度。
Using multinomial radix, the modular square will be finished in one period of the clock, which is faster than using the point multiplication directly.
为以较小的面积代价实现RSA公钥密码算法及其他一些算法所需的求模、模加、模乘、模幂等运算,该文设计了一种可作为协处理器使用的模运算处理器。
An area efficient modular arithmetic processor was developed that is capable of performing RSA public-key cryptography and other modular arithmetic operations as a coprocessor.
科学计算,加、减、乘、除、开方、平方、三次方、三角函数(sincos tan)、阶乘、求反、取模等。
Scientific calculator supporting addition, subtraction, multiplication, division, square-root, square, cube, sin, cos, tan, Factorial, inverse, modulus.
为了提高椭圆曲线密码(ECC)的点乘运算速度,提出了一种快速约简求模算法。
To accelerate point multiplication operation of elliptic curve cryptography(ECC), a fast reduction algorithm for modular operation was introduced.
由于口模内速度变化梯度较大,采用最小二乘近似节点控制方法来控制近似效果。
Since the gradient of the velocity is high in the mould, the control method of simulation points is applied in the least square approximation.
通过分析CDMA系统的特点,提出码滤波最小二乘恒模算法(CF-LSCMA),保证了恒模阵列能够应用于CDMA系统。
Through analyzing on the features of CDMA system, this paper advance the CF-LSCMA algorithm, which guarantees the constant modulus array could be applied in CDMA system.
还可以到糖果店品尝一下糖果,这些糖果和150年前美国南方人制作的一模一样。或者乘一乘蒸汽火车,这可是在美国东南部依然运转的唯一一辆蒸汽火车。
Visit the candy shop to try the same kind of candy that American southerners made 150 years ago, or take a ride on the only steam-engine train still working in the southeast USA.
它等同于通过交换(可能差一个正负号)由局部坐标给出的数乘和这个局部坐标相对应的微分算子得到的微分模。
The global Fourier transform can also be obtained by switching (up to sign) the multiplication by a coordinate of the affine line and the differential operator with respect to this coordinate.
摘要:给出了模空间上多线性乘子新的估计,改进了已知结论,并把所得结果应用于微分方程非线性项的估计。
Abstract: We show new estimates of multilinear multipliers, improve the known results. We apply the results obtained into the estimates of the nonlinearities of differential equations.
摘要:给出了模空间上多线性乘子新的估计,改进了已知结论,并把所得结果应用于微分方程非线性项的估计。
Abstract: We show new estimates of multilinear multipliers, improve the known results. We apply the results obtained into the estimates of the nonlinearities of differential equations.
应用推荐