传统的最邻近联合概率数据关联算法(NNJPDA)不能直接用于多传感器对多目标的跟踪。
The Nearest Near Joint Probabilistic Data Association(NNJPDA) is not used directly in multi-sensor multi-target tracking.
联合概率数据关联算法是公认的多目标跟踪中有效的数据关联算法,但它的计算量过大,实时性不好。
The Joint Probabilistic data association algorithm (JPDA) is the accepted effective data association algorithm, but it has high computational load, and it's not a Real-time algorithm.
该算法提高了概率数据关联(PDA)算法的性能。
The performance of probability data association (PDA) can be improved by this algorithm.
针对被动传感器系统中的数据关联问题,提出了一种新的被动传感器系统模糊-概率双加权数据关联算法。
For the data association problem in the passive sensor system, a new fuzzy-probability weighting data association algorithm was proposed.
针对被动传感器系统中的数据关联问题,提出了一种新的被动传感器系统模糊-概率双加权数据关联算法。
For the data association problem in the passive sensor system, a new fuzzy-probability weighting data association algorithm was proposed.
应用推荐