该文就是基于这个思想提出了新的人脸识别算法,即加强概率推理模型。
This paper proposes a new algorithm to boost performance of probabilistic reasoning model(PRM) face recognition methods.
贝叶斯网络是在不确定性环境下有效的知识表示方式和概率推理模型,是一种流行的图形决策化分析工具。
Bayesian Networks is a model that efficiently represents knowledge and probabilistic inference and is a popular graphics decision-making analysis tool.
本文主要涉及的不确定推理模型包括主观贝叶斯的概率推理模型,可信度理论推理模型,证据理论及其改进推理模型以及神经网络推理模型。
In the paper, the models of uncertain reasoning are focused, such as the reasoning model of Bayes probability, Reliability theory, D-S evidence theory and Neural Network.
该推理模型前级采用神经网络并行子网,用于目标的预分类,后级采用证据理论用于多周期的不确定性推理和概率的全局分配。
The forestage of the fusion model completes target presort and its post-stage is used to multi-period uncertainty inference and the whole set distribution of probability.
该推理模型前级采用神经网络并行子网,用于目标的预分类,后级采用证据理论用于多周期的不确定性推理和概率的全局分配。
The forestage of the fusion model completes target presort and its post-stage is used to multi-period uncertainty inference and the whole set distribution of probability.
应用推荐