标准的粒子群优化算法作为一种随机全局搜索算法,因其在种群中传播速度过快,易陷入局部最优解。
The standard particle swarm optimization algorithm as a random global search algorithm, because of its rapid propagation in populations, easily into the local optimal solution.
由于标准粒子群优化(PSO)算法把惯性权值作为全局参数,因此很难适应复杂的非线性优化过程。
The standard particle Swarm optimization (PSO) algorithm cannot adapt to the complex and nonlinear optimization process, because the same inertia weight is used to update the velocity of particles.
由于标准粒子群优化(PSO)算法把惯性权值作为全局参数,因此很难适应复杂的非线性优化过程。
The standard particle Swarm optimization (PSO) algorithm cannot adapt to the complex and nonlinear optimization process, because the same inertia weight is used to update the velocity of particles.
应用推荐