本文主要研究四元数射影空间中的特殊曲面-极小曲面。
Minimal surfaces is the surface whose average curvature is zero.
本文通过变分法欧拉方程推导出极小曲面的几个等价命题。
This paper investigates several equiyalent propositions of minimal curve surface by means of the euler equation of calculus of variations .
由于在极小曲面理论中的作用,对调和映射的研究已有较长时间。
Harmonic mappings have long been studied because of the role these mappings play in the theory of minimal surfaces.
给出了拟常曲率流形中极小曲面的共形度量的高斯曲率之上界估计。
Some estimates of Gaussian curvature of conformal metric of mini mal surfaces immerse in the manifold of quasi-constant curvature were obtained.
它共分六个部分:映射定理;单叶调和函数的数值估计;特殊映射;变分方法;境界性质和在极小曲面中的应用。
It contains six parts: mapping theorems, numerical estimations of univalent harmonic functions, special mappings, variational method, boundary behavior and applications to minimal surfaces.
它共分六个部分:映射定理;单叶调和函数的数值估计;特殊映射;变分方法;境界性质和在极小曲面中的应用。
It contains six parts: mapping theorems, numerical estimations of univalent harmonic functions, special mappings, variational method, boundary behavior and applications to minimal surfaces.
应用推荐