其中一个是找出一个函数的极小值,极大值,这个函数的变量是相关的,这种方法称为拉格朗日乘数法。
One of them is to find the minimum of a maximum of a function when the variables are not independent, and that is the method of Lagrange multipliers.
最大能量法的结果受初始静校正量的影响,它的解容易陷入目标函数的局部极小值。
The result of maximum energy method depends on the initial values of residual statics. The solution is often trapped into the local minimum of the objective function.
极大极小问题是一类不可微优化问题,熵函数法是求解这类问题的一种有效算法。
Minimax problem is a sort of non-differentiable optimization problem and the entropy function method provides a efficient approach to solve such kind of problems.
填充函数法是一种解无约束全局极小化问题的方法。
The filled function method is an approach for solving unconstrained global minimization problem.
提出了一类解极小极大问题的熵函数法,这种方法也可用来解线性或约束优化问题。
A method for solving minimax problem is presented, which also can be used to solve linear or constrained optimization problems.
第三章给出一类新的拉伸函数,其从原函数的一个局部极小点出发应用拉伸函数法修正目标函数。
In the third chapter, a new auxiliary function method is proposed, and then a stretching function technique is used to modify the objective function with respect to the obtained local minimum.
该方法是在辐射传递方程离散坐标近似的基础上,用求目标函数极小值的共轭梯度法进行反演计算。
The inverse problem is solved using conjugate gradient method of minimization based on discrete ordinates method of radiative transfer equation.
算法继承了人工势场法的基本思想,通过寻找路径点的能量函数的极小值点而使路径避开障碍物。
The algorithm given in this paper inherits the basic idea of potential energy field method. By searching the minimum value of the energy function, the collision free path can be found.
采用段法(区域法)求解正问题,反演中采用求目标函数极小值的共轭梯度法。
The energy equation is solved by the zonal method, and the inverse radiation problem is solved through the minimization of performance function with the conjugated gradient method.
后者利用罚函数法给出了能量极小意义下的最优解,适合于保持光顺性要求的全局修改。
The latter gives the optimal solution to the energy equation with penalty function method and it is a global modification with good fairness.
本文运用内罚函数法,使一个在颤振、强度和最小尺度等约束条件下的翼面结构重量取极小值。
In this paper an interior penalty function method is applied to minimize the weight of a wing structure under the constraints of flutter, strength and minimum gage.
本文运用内罚函数法,使一个在颤振、强度和最小尺度等约束条件下的翼面结构重量取极小值。
In this paper an interior penalty function method is applied to minimize the weight of a wing structure under the constraints of flutter, strength and minimum gage.
应用推荐