运用临界点理论中的极小、极大方法得到一类超二次哈密顿系统的周期解的存在性的存在性定理。
Some solvability conditions of periodic solutions are obtained for a class of first order(superquadratic) non-autonomous Hamiltonian systems in light of the minimax methods of critical point theory.
通过极小化作用原理和极小极大方法得到了一类四阶非线性椭圆方程解的存在性和多重性。
The existence and multiplicity results are obtained for a class of fourth-order nonlinear elliptic equations by the least action principle and the minimax methods, respectively.
本文以极大极小代数为基础,给出了一种求解水资源最优规划问题的代数算法。最后用实例验证了该法的有效性。
On the base of the minimax-algebra, this paper proposes an algebra method to solve the optimum planning question of the water resources, and this paper proves its effectiveness by a real example.
通过使用临界点理论中的极大极小方法获得了两个新的存在性定理。
Two new existence theorems are obtained by the minimax methods in critical point theory.
用临界点理论中的极小极大方法得到了次线性椭圆方程Neumann问题多重解的存在性。
The existence of multiple solutions is obtained for Neumann problem of sublinear elliptic equations by the minimax methods in the critical point theory.
用临界点理论中的极小极大方法得到了次线性椭圆方程Neumann问题多重解的存在性。
The existence of multiple solutions is obtained for Neumann problem of sublinear elliptic equations by the minimax methods in the critical point theory.
应用推荐