采用时间和空间均为二阶精确的有限差分方法,将偏微分方程进行差分化。这样,空间的电磁场可由时间域有限差分法(FDTD)来求解。
The TM set of equations can be solved using a finite difference time domain (FDTD) approximation that is second-order accurate in both space and time.
常用的数值计算方法有有限差分法和有限元法,但用标准的有限差分方法求解数学模型时常常失效,根本原因在于对流项的存在。
The basic numerical simulation method is FDM and FEM, but the traditional FDM are not efficient for some models with convection term.
有限差分法利用网格节点的差分公式取代控制方程中的各阶导数,然后利用迭代方法求解差分方程,该方法简单、直观且易于掌握。
FDM replace the derivative in control equation with difference formula, and then solve the equation with iterative method, which is simple, intuitionistic and easy to master.
计算结果表明:小波数值均匀化方法与精细剖分的有限差分法相比较,既大大地节省了计算时间又获得了较好的精度。
Then the wavelet transform numerical homogenization gets numerical results at a low cost for solving the original equation in coarse scale space. The numerical results show that th…
计算结果表明:小波数值均匀化方法与精细剖分的有限差分法相比较,既大大地节省了计算时间又获得了较好的精度。
Then the wavelet transform numerical homogenization gets numerical results at a low cost for solving the original equation in coarse scale space. The numerical results show that th…
应用推荐