利用有理数对实数逼近的表示方式,给出黎曼函数处处不可导的一种证明,给出单位圆周上的有理点在单位圆上稠密的证明。
Rational number can approximate to real number, use the notation of approximate one can prove Riemann function isn t differentiable anywhere, that the Rational points are dense in unit circle.
摘要利用有理数对实数逼近的表示方式,给出黎曼函数处处不可导的一种证明,给出单位圆周上的有理点在单位圆上稠密的证明。
Rational number can approximate to real number use the notation of approximate one can prove riemann function isn't differentiable anywhere that the rational points are dense in unit circle .
应用复变函数论的方法,简洁地给出了的一切有理数解和一切整数解公式。
In this paper, the general rational solutions and the general integer solutions of are given.
作者提出一组有理数概率下效用函数存在的公理,并证明该公理体系下的效用表示定理。
This paper puts forward a set of axioms and proves the existence and uniqueness of utility function with rational probabilities on the set of axioms.
作者提出一组有理数概率下效用函数存在的公理,并证明该公理体系下的效用表示定理。
This paper puts forward a set of axioms and proves the existence and uniqueness of utility function with rational probabilities on the set of axioms.
应用推荐