本课题对有理函数插值方法的理论及其算法进行了研究。
This paper discusses the theory and several algorithms of rational function interpolation.
然后构造了在预给极点情况下求主对角线和副对角线上向量值有理插值的矩阵算法。
In addition this paper constructs a matrix algorithm for computing bivariate diagonal vector valued rational interpolants with preassigned poles.
受二元多项式插值的迭加算法的启发,给出一种简便的求有理插值函数的方法,同时通过实例进行验证。
Enlighened by the superposed algorithm of two element polynomial interpolation, we present a simple method of finding rational interpolation functions.
然后利用插值型值点复数化的方法及向量值连分式的向后三项递推关系式讨论并给出了二元向量值有理插值的一种新算法。
Then a new algorithm of brivate vector -valued rational interpolants by means of complexification of the knots and backward three-term recurrence relations is given.
第四章主要讨论了二元向量有理插值的迭加算法及二元向量切触有理插值的表现公式。
The chapter 4, we mainly discuss the overlay algorithm of two-variable vector-valued rational interpolation and show formula of two-variable vector-valued contact interpolation.
第四章主要讨论了二元向量有理插值的迭加算法及二元向量切触有理插值的表现公式。
The chapter 4, we mainly discuss the overlay algorithm of two-variable vector-valued rational interpolation and show formula of two-variable vector-valued contact interpolation.
应用推荐