接着把有理多项式的参数转化成RLC集总元件参数,得到天线的等效电路模型;
Thirdly, deduce the parameters of the rational approximation to RLC lumped-element, then obtain the equivalent circuit model.
针对IKONOS卫星立体像对中的典型建筑物,利用有理多项式模型进行三维重建。
And aim at the IKONOS satellite stereos, the reason polynomial model was used to calculate three-dimensional information.
Computationsin CommutativeAlgebra (CoCoA)是另一个免费计算机代数系统,用于处理超大型整数、有理数和多项式。
Computations in Commutative algebra (CoCoA) is another free computer algebra system for working with very large integers, rational Numbers, and polynomials.
每个多项式都是可微的,而每个有理函数也是如此。
Every polynomial is differentiable, and so is every rational.
这一结果可以与细分技术相结合,得到有理曲面的分片区间多项式的逼近。
This result can be combined with subdivision method to obtain a piecewise interval polynomial approximation for a rational surface.
多项式是一种特殊的有理函数,因而具有许多特殊的动力学性质。
As a kind of special rational functions, polynomials have a lot of special and attracting dynamical properties.
构造的曲面是分片双三次有理参数多项式曲面。
This surface is a piecewise bi-cubic rational parametric polynomial surface.
受二元多项式插值的迭加算法的启发,给出一种简便的求有理插值函数的方法,同时通过实例进行验证。
Enlighened by the superposed algorithm of two element polynomial interpolation, we present a simple method of finding rational interpolation functions.
有理参数多项式曲面的快速逐点生成算法在计算机图形学中有重要的应用。
The fast point-by-point algorithm for generating rational parametric surfaces has important application in computer graphics.
进行各种有理式计算,求多项式、有理式方程和超越方程的精确解和近似解。
Various RATIONAL, polynomials, RATIONAL Exact solutions of equations and transcendental equations and approximate solutions.
本文利用整系数多项式与正有理数的对应,将多项式因式分解通过对真分数序列筛选的办法求得因式。
Through the corresponding between integral coefficient polynomial and rational number, this paper obtains factorization from factorization of polynomial by the way of sieve in true fraction series.
本文提出了一个在三角形域上的有理布尔和插值的新方法,此方法的特点是所构造的插值函数结构简单,多项式准确集较高。
A new method of rational Boolean sum interpolation on an arbitrary triangle is developed in this paper. The structure of the interpolation function is simple.
本文指出了弱粘弹性材料结构的特征值是一组有理分式多项式方程的根,并给出了关于这些有理分式多项式方程根的一个定理。
It is pointed out that the eigenvalues of these structures are the roots of a series of rational fraction polynomial equations. A theorem about the roots of these equations is proved in the paper.
通过研究多项式的系数来确定整系数多项式的有理根,进而得出整系数多项式的有理根的一个判定定理和根的存在定理。
The paper available mapping of integral coefficient polynomial and rational number, obtain factorization from factorization of polynomial by the way of sieve in true fraction series.
通过研究多项式的系数来确定整系数多项式的有理根,进而得出整系数多项式的有理根的一个判定定理和根的存在定理。
The paper available mapping of integral coefficient polynomial and rational number, obtain factorization from factorization of polynomial by the way of sieve in true fraction series.
应用推荐