有效哈密顿量对详细研究一个相互作用体系的动力学特性是非常重要的。
One effective Hamiltonian is helpful for us to study the dynamical properties of one interaction system.
本文采用改进了的线性组合算符法导出了极性半导体中与形变势相互作用的表面极化子的有效哈密顿量。
An effective Hamiltonian of surface polaron interacting with the deformation potential in polar crystals was derived by using improved linear combination operator method.
采用改进了的线性组合算符和微扰法导出了极性晶体中与形变势相互作用的表面极化子的有效哈密顿量。
An effective Hamiltonian of surface polaron of interacting with the deformation potential in polar crystals is derived by using improved.
采用线性组合算符和拉格朗日乘子法,分别导出了在强、弱耦合情形下表面电子的有效哈密顿量,得到了强、弱耦合表面电子的重正化质量。
An effective Hamiltonian of surface electron is derived by using a linear-combination operator and Lagrange multiplier method. The renormalization masses of a strong-c...
采用线性组合算符和拉格朗日乘子法,分别导出了在强、弱耦合情形下表面电子的有效哈密顿量,得到了强、弱耦合表面电子的重正化质量。
An effective Hamiltonian of surface electron is derived by using a linear-combination operator and Lagrange multiplier method. The renormalization masses of a strong-c...
应用推荐