摘要最大模原理在复变函数论中占有重要的地位,是研究解析函数的有力工具。
Maximum modulus principle plays an important role in the complex analytics, and it is a powerful tool in studying the analytic function.
从复变函数理论出发,利用辐角原理、最大模原理、最小模原理给出代数学基本定理的几种新的证明方法。
This paper uses several methods of complex functions theorey to prove fundamental theorem of algebra by argument principle, maximum modulus principle and minimum modulus principle.
从复变函数理论出发,利用辐角原理、最大模原理、最小模原理给出代数学基本定理的几种新的证明方法。
The minimum modulus principle is proved by using the preserving field theorem, and the span of minimum modulus point is discussed.
本文给出解析函数最大模原理一个较为直接的证明,方法简便,并可由此讨论区域内任一点处各方向上解析函数模的变化情况。
This paper offers a direct verification of the maximum modulus principle. The method is simple and thus we might discuss the situation of the modulus change at any point of the region.
还叙述了模-数混合补偿技术的工作原理,分析了引起拟合误差的因素并推导出计算最大误差的公式。
The principle of the analog-digital composite compensation technique is described and the factors causing fitting errors arc analyzed. The formula for calculating the maximum error is derived.
还叙述了模-数混合补偿技术的工作原理,分析了引起拟合误差的因素并推导出计算最大误差的公式。
The principle of the analog-digital composite compensation technique is described and the factors causing fitting errors arc analyzed. The formula for calculating the maximum error is derived.
应用推荐