利用矩阵的极分解,导出了逆特征值问题的最佳逼近解。
The optimal approximate solution of this inverse eigenvalue problem also was given by means of the polar decomposition of matrices.
并给出某些特殊条件下的最佳逼近解的求法及解的表达式。
The general solving method is given. The algorithms and expressions of the solutions are provided under some special conditions.
另外,给出了中心对称最小秩解集合中与给定矩阵的最佳逼近解。
In addition, for the minimal rank solution set, the expression of the optimal approximation solution to a given matrix is derived.
证明了最佳逼近问题存在唯一解,并给出了求最佳逼近解的算法和数值算例。
The numerical method to find the optimal approximate solution and numerical experiments are provided.
本文研究具有某些固定元素的矩阵在线性约束下的最佳逼近,其结果可以用于解一类矩阵反特征值问题。
In this paper, we consider the best approximation of a matrix under a given linear restriction with some fixed elements. This result can be apply to solving a class matrix inverse eigenvalue problem.
同时还给出了它的最佳逼近问题的极小范数解。
The least-norm solution of the optimal approximation was given.
用这种方法可以有效逼近解的局部极小点,但不一定能得到最佳解或最佳的分辨率。
This method can approach local extreme value available, but it is not the optimal solution or optimal resolution.
用这种方法可以有效逼近解的局部极小点,但不一定能得到最佳解或最佳的分辨率。
This method can approach local extreme value available, but it is not the optimal solution or optimal resolution.
应用推荐