本文证明了成对比较矩阵在相容性矩阵集合中的最佳逼近的存在性和不唯一性。
The existence of a best approximation of the pairwise comparison matrix from the set of consistent matrices is proved.
本文首先证明了成对比较矩阵在相容性矩阵集合中的最佳逼近的存在性和不唯一性。
The existence of a best approximation to the pairwise comparison matrix from the set of consistent matrices is proved.
同时,作为应用,研究了最佳联合逼近元的存在性与唯一性问题。
As applications, existence and uniqueness of a best simultaneous approximation element are studied.
获得了内积空间关于弱闭凸集的最佳逼近元的存在性及其刻划定理。
In the inner product space, the existence theory of best approximation element was obtained and described.
本文利用拓扑矢量空间中的连续线性泛函导入最佳逼近定义,给出了最佳逼近元的特征定理、存在性定理和唯一性定理。
In this paper the author introduces the definition of the best approximation in topological vector Spaces by use of continuous linear functionals.
证明了最佳逼近元的唯一存在性,并给出了最佳逼近元的计算公式。
The unique existence of the best element of approximation is proved and the formula of the best element of approximation is given.
证明了最佳逼近元的唯一存在性,并给出了最佳逼近元的计算公式。
The unique existence of the best element of approximation is proved and the formula of the best element of approximation is given.
应用推荐