进化算法作为处理复杂函数最优化、全局最优化和多目标最优化问题的一种有效算法,正日益受到人们的重视。
Evolutionary algorithms are one of the effective algorithms for hard optimization, global optimization and multiobjective optimization problems, which are attached more and more importance to.
算法中的免疫记忆单元确保了快速收敛于全局最优解,算法中的均匀交叉操作则体现了进化的思想。
The immune memory units guarantee this algorithm rapid convergence to global optimum and the uniform crossover operator embody the idea of evolution.
具体表现在:由于模拟进化算法的随机性,不能保证每次计算都能收敛到全局最优解,同时还存在“早熟”现象;
The drawbacks of simulated evolutionary algorithms are that the global optimality can not be always guaranteed because of randomicity and premature con vergence.
免疫算法是一种生物进化原理、最优化技术和计算机技术相结合的全新算法。
Immune algorithm is a completely new method band together with the principle of life-form evolution, optimization technique and computer technique.
采用进化优化算法——蚁群优化算法来求解机组最优启停问题。
The optimal unit commitment is solved via the Ant Colony Optimization algorithm in this paper.
利用粒子群算法和差分进化算法的优点,可以获得测向问题的全局最优解。
The ADPSO is a global optimization algorithm for direction finding, which takes advantage of the merits of differential evolutionary algorithm and particle swarm algorithm.
算法引入模拟退火机制,在遗传进化过程中的每一代,对最优个体进行邻域局部寻优,利用模拟退火进一步改善算法的收敛性能。
Simulated annealing mechanism is introduced to do local-search for the best chromosome in every generation of the evolution process. This improves the convergence of the algorithm.
本文提出了一个基于进化算法的信道最优矢量量化器(COVQ)设计算法。
An evolutionary algorithm based channel-optimized VQ (COVQ) design algorithm on noisy channel is presented in the paper.
设计了多目标进化算法来求解代价函数的全局最优解,提出了非线性盲源分离的多目标进化算法。
For separating source signals efficiently, a nonlinear blind separation algorithm based on specific-designed multiobjective evolutionary algorithm is proposed.
但是与其它仿生学进化算法相比,蚁群算法存在搜索时间长、易陷入局部最优等缺点。
But compare to other bionics evolution algorithms ACO has disadvantages such as long-time searching and local best solution and so on.
在不考虑状态转移概率的情况下证明了思维进化算法能够收敛到全局最优解。
Based on the model, the convergence of the algorithm is analyzed and the global convergence of the algorithm is proved when leaving the divert probability out of account.
模糊逻辑提供和真人一样的能力概念化和推理,而一种进化算法是用来找最优解非线性和复杂的优化问题。
Fuzzy logic provides ability for human like conceptualization and reasoning, while evolutionary algorithms are useful for finding optimal solutions of nonlinear and complex optimization problems.
进化算法作为处理复杂函数最优化、多目标最优化问题的一种有效算法,正日益受到人们的重视。
Evolutionary algorithm is one of the most effective algorithms for hard optimization and multi-objective optimization problems, which are attached more and more importance to.
一个进化算法应用到全局优化问题的,它可能会陷入周围的局部最优解的目标函数,并具有较低的收敛速度。
When an evolutionary algorithm is applied to global optimization problems, it may be trapped around the local optima of the objective function and has a low convergence-rate.
种群并行进化策略、变异率自适应调整、与启发式算法相结合等措施提高了遗传算法收敛到最优解的成功率。
In order to increase the algorithm's capacity of global convergence, some strategies such as adaptive probability of mutation, calculating the degree of similarity, niche technology bas…
种群并行进化策略、变异率自适应调整、与启发式算法相结合等措施提高了遗传算法收敛到最优解的成功率。
In order to increase the algorithm's capacity of global convergence, some strategies such as adaptive probability of mutation, calculating the degree of similarity, niche technology bas…
应用推荐