讨论局部对称空间中具有平行平均曲率向量的子流形,得到其关于第二基本形式模长平方的积分不等式的相关定理。
This paper discusses submanifolds with parallel mean curvature vector in local symmetric Spaces and obtains integral invariants about the square of modulus-length.
利用有限元软件,建立了跨径相同、曲率半径和圆心角以及支撑形式不同的弯梁桥计算模型。
The calculation models of curved beam Bridges with same span length, but different curvature radius, center angles and supporting forms are established by means of finite element software.
我们把CHENG (1977),LI(1996)的结果推广到了非定空间形式中常数量曲率的类空子流形中。
The result is extended in CHENG (1977) and li (1996) to the space-like submanifolds with constant scalar curvature in an indefinite space form.
其实,这是非常具有挑战性的简化形式和曲率必须十全十美。
In fact, it is very challenging as the simplified forms and curvature need to be perfect in every way.
利用数量曲率与第二基本形式长度之间的一个不等式关系,证明了其子流形的截面曲率一定非负(或者为正),并将此应用到紧致子流形上,得到一些结果。
By using an inequality relation between a scalar curvature and the length of the second fundamental form, it is proved that sectional curvatures of a submanifold must be nonnegative (or positive).
本文讨论了Sasakian空间形式中具有平行平均曲率向量的C-全实子流形,得到了一个Simons型公式并且改进了S.Yamaguchi等的一个结果。
We have discussed the C-totally real submanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.
本文讨论了Sasakian空间形式中具有平行平均曲率向量的C-全实子流形,得到了一个Simons型公式并且改进了S.Yamaguchi等的一个结果。
We have discussed the C-totally real submanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.
应用推荐