支持向量机是在统计学习理论基础上开发出来的一种新的、非常有效的机器学习方法。
SVM is a novel powerful machine learning method developed in the framework of Statistical Learning Theory (SLT).
支撑矢量机是根据统计学习理论提出的一种新的学习方法,即使用核函数在高维空间里进行有效的计算。
The support vector machine is a novel type of learning technique, based on statistical learning theory, which USES Mercer kernels for efficiently performing computations in high dimensional Spaces.
建立在统计学习理论基础之上的支持向量机(SVM),是一种基于结构风险最小的小样本机器学习方法。
Support vector machine (SVM) is a novel and powerful learning method which is derived based on statistical learning theory (SLT) and the structural risk minimization principle.
支持向量机(SVM)是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。
Support Vector Machines(SVM) are developed from the theory of limited samples Statistical Learning Theory (SLT) by Vapnik et al. , which are originally designed for binary classification.
支持向量机(SVM)是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。
Support Vector Machines(SVM) are developed from the theory of limited samples Statistical Learning Theory (SLT) by Vapnik et al. , which are originally designed for binary classification.
应用推荐