该线性拟合方程的斜率为0.432cm/张。
The slope of this linear fitting equation is 0.432 cm/sheet.
为了把这些物理量同我们不是很理解的这个量联系起来,我们必须对斜率有一定的了解。
In order to relate turning these physical knobs to this quantity, which we don't have a very good feel for, we've got to have a feel for the slopes.
常数a表示垂直截距,b表示消费计划的斜率。
The constant a represents the vertical intercept, and b represents the slope of the consumption schedule.
它告诉我们靠近原点处的斜率。
这个斜率就是边际消费倾向。
斜率是多少,正的还是负的?
我得到了曲线,然后观察曲线的斜率。
从这里开始上升,斜率为正。
所以,在这儿时,有一个非常大的斜率。
现在如果我一直转,那么斜率又会减小。
And now, if I keep rotating, then the slope will decrease again.
事实上没有任何的斜率。
如果我按这个斜率上升到这,它会被截在某处。
If I follow this slope up to here, it'll intercept somewhere.
其他有不同能量的,相互作用将有不同的斜率。
Other kinds of interactions with different energies will have a different slope.
如果我对斜率做一个积分我就会知道这个方程。
直线的斜率是多少?
这是这儿的斜率,这个斜率是。
它有这样的斜率。
该项产品学习曲线的“斜率”是多少?
我们知道fx和fy是,曲面上两条切线的斜率。
We know that f sub x and f sub y are the slopes of two tangent lines to this plane, two tangent lines to the graph.
负的斜率产生的原因,下面我会告诉你生命的秘密。
So, the reason why these slopes come from the, so I'll tell you the secret of life.
水有正的斜率。
特征线段的斜率反映了薄膜表面的平面度。
And the slopes of characteristic line sections represent planarization of film surface.
斜率是负的。
这意味着斜率是正的。
那样给出图像的一个垂直切面,这个切面上有某个斜率。
So, that gives me a slice of my graph by a vertical plane, and the slice has a certain slope.
比如,微积分是从斜率,面积和变化率等等话题中引入的。
For instance, calculus is usually first introduced interms of slopes, areas, rates of change, and so forth.
如果一条道路的斜率为,求它与水平线所形成的角。
Find the Angle that a road of gradient makes with the horizontal.
这样x为自变量,z为因变量,这条曲线的斜率就是关于x的导数。
And when I change x, z changes, and the slope of that is going to be the derivative with respect to x.
这个预算限制在这幅图上是一条,是一条经过该点并以为斜率的直线。
The budget constraint is a straight line through this point with a slope of.
一个给定点的导数不过就是一条切线的斜率轻吻了那个点。
A derivative at a given point is just the slope of the tangent line that kisses that point.
应用推荐