介绍了一种基于模糊模式识别以及向量空间模型提取特征向量的中文文本分类器的设计与实现。
This paper introduces the design and implementation of the Chinese text categorizer based on the fuzzy recognition and the extraction of the characteristic vector with the vector space model.
利用训练文档的类信息对文本分类模型进行建模,提取对分类贡献较大的特征。
Use the class information of training set to build the model, and extract the feature benefit to classification.
首先提取出文本训练集的特征词,建立特征向量空间模型。
Firstly character words of training documents are extracted, vector space model is constructed.
在此基础上,结合用户的个人兴趣,给出了文本特征抽取机制、文本推荐机制、文本与信息需求模型的匹配机制。
Also put forward are the approach for text feature extraction, the pattern of user annotations, and the mechanism for matching texts and profiles.
使用向量空间模型来表示事件描述片段的特征,并分类计算特征词的重要度,最后对文本中的事件片段进行定位和分类。
This paper uses the Vector Space Model to express the features of event description segment and calculate the importance of feature words in different classes.
用骨架语片做特征项,用空间向量模型表示文本语义,用语片的出现频度做语片权重,用余弦法计算文本间语义相似度。
Computing the semantic similarity of sentences by the method of cosine, eigenvalue come from the skeleton semantic clip, and the semantics of sentence expressed the vector space model.
本文提出的一个嵌套关系模型支持文本存储和文本检索操作,其中特征文件索引为文本检索提供了技术支持。
In this paper, a relational database based on nested relation is proposed it supports text storage and text operator. The text query is supported by signature file indexing technology.
经实验验证,这两个模型可以很好地选择出有代表性的特征,提高了文本过滤的精度。
Simulation results demonstrated that the proposed method can improve the precision of text filtering.
结合HTML标记权重信息建立向量空间模型,弥补了特征项在文本集合中分布的差异。
Vector space model is constructed with HTML tag weights, which offset the distribution differences of text terms.
第一,提出一种有监督的潜在语义索引(SLSI)模型降维方法,用于文本分类任务中的特征表示。
The main contributions include: 1 a novel dimension reduction method, Supervised Latent Semantic Indexing SLSI, was proposed to represent documents for text classification tasks.
本文提出的一个嵌套关系模型支持文本存储和文本检索操作,其中特征文件索引为文本检索提供了技术支持。
Based on the concept of relation and sub-relation, this paper investigates the inherent meaning of traditional set operations for the nested relational data model.
本文提出的一个嵌套关系模型支持文本存储和文本检索操作,其中特征文件索引为文本检索提供了技术支持。
Based on the concept of relation and sub-relation, this paper investigates the inherent meaning of traditional set operations for the nested relational data model.
应用推荐