• 数据频繁模式挖掘数据流挖掘基础研究之一

    Frequent pattern mining is one basic research of data stream mining.

    youdao

  • 最后,举例说明数据挖掘应用展望数据流挖掘未来的研究方向。

    Finally, main applications and future research directions of data stream mining are pu...

    youdao

  • 近年来,数据挖掘越来越引起研究人员的关注逐渐成为许多领域有用的工具

    Data stream mining has attracted many researchers 'attention and has become a useful tool for many fields.

    youdao

  • 摘要:近年来,数据挖掘越来越引起研究人员的关注逐渐成为许多领域有用的工具

    Absrtact: Data stream mining has attracted many researchers 'attention and has become a useful tool for many fields.

    youdao

  • 因此针对仿真常用数据挖掘任务研究时空效率高效的相应数据挖掘算法具有重要意义

    Thus, it is important to research data stream mining algorithms having higher time and space efficiency, and to aim at resolving data mining tasks often used in system simulation.

    youdao

  • 传统面向静态数据算法无法直接用于挖掘数据,而现有数据流挖掘算法存在时空效率缺陷。

    Traditional data mining algorithms aiming at static datasets can't be used to mine data streams directly, neither do they have the time and space efficiency.

    youdao

  • 研究数据历史数据变化趋势预测数据流未来时间窗口内可能数据流挖掘重要工作

    It is also an important work to study the varying tendency of the historic stream data ina data stream and predict the possible values of the stream data in the future time window.

    youdao

  • 首先阐述相关概念接着提出了一种基于动态数据挖掘案例推理模型其中动态数据流挖掘算法采用改进数据流聚类算法。

    This paper describes the relevant concepts and presents a model of CBR based on dynamic data stream mining, and gives an improved clustering algorithm of data stream.

    youdao

  • 数据连续快速无限未知特点决定了传统数据挖掘技术已经适合数据挖掘分析挖掘数据流已经成为热点研究问题

    Data streams are continuous, fast, unlimited, unknown, so traditional technology of data mining is not suitable to data stream mining. Analysis and mining data stream has been a popular research.

    youdao

  • 通过模型使用基于动态数据挖掘案例推理技术,对数据进行实时挖掘产生连续、动态的临时案例库,实现知识库实时更新从而满足实际问题变化的需要

    Through this model the system can mine real-time datum, produce continuous, dynamic temporary cases, update the knowledge base in real time and meet the needs of the practical problems.

    youdao

  • 查看InfoSphereWarehouse文档了解如何查看挖掘数据uima日志以及如果更改uima跟踪级别获得更多信息

    See the InfoSphere Warehouse documentation for instructions on how to see the UIMA logs of a mining or data flow and how to change the UIMA trace level to get more information.

    youdao

  • 如果数据挖掘启用内容跟踪,那么CONFIG级别该级别以上UIMA日志路由InfoSphereWarehousing日志

    If you enable content tracing for a process, a data flow, or a mining flow, UIMA logs of level CONFIG and above are routed to the InfoSphere Warehousing log.

    youdao

  • 国内外学者提出许多新的挖掘数据频繁模式方法技术

    Many new techniques and methods on frequent pattern mining in data stream have been proposed.

    youdao

  • 数据频繁K挖掘是指数据找出K个项,它们的支持数大于数据流中的其他项。

    Mining most frequent K items in data streams means finding K items whose frequencies are larger than other items in data streams.

    youdao

  • 数据频繁挖掘算法需要利用有限内存,以尽量次数扫描数据流就能得到频繁项。

    Frequent item mining algorithms need to perform as little data stream scanning as possible while using limited size of memory.

    youdao

  • 传统群点挖掘算法无法有效挖掘数据中的离群点。

    The traditional algorithm of mining outliers cannot mine outliers in data stream effectively.

    youdao

  • 频繁挖掘一个非常基本的,最重要任务数据处理

    Frequent items mining is a very basic but important task in the data stream processing.

    youdao

  • 数据流的特征数据流挖掘提出了严峻挑战

    Those facts bring tremondous challenges to data-stream mining.

    youdao

  • 数据本身特点使得静态挖掘方法不再满足要求

    Some characters of Data stream make that static mining method can't meet the requirements of nowadays mining application.

    youdao

  • 提出一种数据频繁挖掘算法(SW - COUNT)。算法通过数据采样技术挖掘滑动窗口数据频繁项。

    A frequent items mining algorithm of stream data (SW-COUNT) was proposed, which used data sampling technique to mine frequent items of data flow under sliding Windows.

    youdao

  • 针对数据无限输入动态变化特点提出一种新的基于距离数据离群点挖掘算法

    Concerning the infinite input and dynamic change in data stream environment, a new algorithm for detecting data stream outliers based on distance was proposed.

    youdao

  • 首先将数据传统数据进行比较,然后数据流类分析,频繁挖掘作了介绍

    Compared stream data with traditional data, this paper is in order to mine frequency items, clustering over data stream.

    youdao

  • 概念漂移数据分类挖掘中的一个难点,它伴随着数据时变性而产生

    Concept drift, as a difficult point in the field of data stream mining, is generated with the accompany of time-varying data streams.

    youdao

  • 针对频繁挖掘算法数据结构处理机制复杂问题,提出窗口快速滑动数据流频繁闭项集挖掘算法——MFWSR

    This paper proposes an algorithm of Mining Frequent closed itemsets with Window Sliding Rapidly(MFWSR) against the complexity of data structure and process for determination.

    youdao

  • 商业数据除了具备数据流的基本特点外,还具备连续性冲突性时间性海量性分布性等特性。因此传统数据挖掘技术不能直接应用商业数据流上。

    In addition, the business data stream is continuous, conflict, timing, massive and distributed, so traditional data mining techniques can not be applied directly to the business data stream.

    youdao

  • 商业数据除了具备数据流的基本特点外,还具备连续性冲突性时间性海量性分布性等特性。因此传统数据挖掘技术不能直接应用商业数据流上。

    In addition, the business data stream is continuous, conflict, timing, massive and distributed, so traditional data mining techniques can not be applied directly to the business data stream.

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定