方法利用效应代数、序列效应代数的定义及算子分解的方法。
Methods Using the definition of effect algebra, sequential effect algebra and the polar decomposition of operator.
研究了标度广义效应代数与标度效应代数的代数结构,给出了比较完整的结果。
The complete constructions of scale generalized effect algebras and scale effect algebras are studied in this paper.
给出了效应代数水平和的定义,借助于水平和,列举并讨论了一个效应代数可以具有许多个序列积。
Aim To introduce the logical definition of the horizontal sum of effect algebras and study the uniqueness of sequential products on effect algebra.
引入了N -可分效应代数的定义,证明了N -可分效应代数是区间效应代数且N -可分效应代数可嵌入到可分效应代数中。
We introduce the definition of N-divisible effect algebras, then we show that N-divisible effect algebras are interval effect algebras.
引入了N -可分效应代数的定义,证明了N -可分效应代数是区间效应代数且N -可分效应代数可嵌入到可分效应代数中。
We introduce the definition of N-divisible effect algebras, then we show that N-divisible effect algebras are interval effect algebras.
应用推荐