与以往的同一领域的经典定理相比,它的收敛性条件是宽松的。
Its convergent condition is relaxed compared with the classical theorem on the same field.
详细分析和论证两个模型的局部超线性收敛性及二次收敛性条件,其中并不需要严格互补条件。
The local superlinear and quadratic convergence of this two models under some mild conditions without the strict complementary condition are analysed and proved.
随后我们提出了求解这类概率约束随机规划的一种近似算法,并在一定的条件下证明了算法的收敛性。
And then, we present an approximation method for solving this probabilistic constrained stochastic programming, and prove certain convergence of the method under some conditions.
在较为温和的条件下证明了方法的全局收敛性,及罚参数只需进行有限次调整。
It is shown that this method possesses global convergence and the penalty parameters are adjusted only finite times under mild conditions.
在较弱的条件下,获得了算法的全局收敛性定理。
Under very mild conditions, the algorithm possesses global-convergency.
文中给出了解存在的条件和解法,对解的舍人误差进行了分析,并证明了样条函数的收敛性。
The condition of existence of solution and its algorithm are given, the rounding error of the solution process is analyzed and the convergence of the spline is proved.
设为随机变量序列,文章在较弱的混合速度且非同分布的条件下证明了其完全收敛性的一个结果。
Let be a -mixing random variable sequence, and it is proved to be a theorem of complete convergence under the condition of slow mixing speed and non-identity distribution.
给出一类广义鞍点问题迭代解法的收敛性分析结果,降低了目前已有相关结论的适用条件,因而使得相关结果具有更广泛的应用性。
In this paper, we present a convergent result of the iterative solution methods for a class of generalized saddle point problem, which lowers the condition of the recent results.
第四章我们首先证明了算法是有定义的,其次在没有正则性条件的假设下证明了算法的全局收敛性。
We prove that the algorithm is well defined and the global convergence of method is obtained without regular conditions.
另外在较弱的条件下,证明该方法具有超线性收敛性。
We also prove that the method has superlinear convergence rate under some mild conditions.
在一定条件下,给出了解的收敛性和误差估计。
Under certain conditions the convergence property and error estimations are obtained.
提出一个新的下降方向,在函数伪单调的条件下证明了算法的全局收敛性。
In this paper, we propose a new descent direction. Under the pseudomonotone of the underlying function, we prove the global convergence of the algorithm.
本文提出一类求解无约束优化问题的非单调曲线搜索方法,在较弱条件下证明了其收敛性。
This paper presents a non-monotone curve search method for unconstrained optimization problems and proves its convergence under some mild conditions.
在给定条件下,证明了该迭代法的收敛性,并给出了误差估计式。
The convergence of the iterative method is proved under some conditions, and an error estimate formula is presented.
首先,利用范数理论研究受控混沌系统的收敛性,并导出受控系统收敛的充分条件和线性反馈增益矩阵的选取原则;
Firstly, we use norm theory to research the controlled chaotic systems and lead to some sufficient conditions for system convergence and the choice of state feedback gain matrixes.
讨论一类可数离散半群上概率测度卷积幂的弱收敛性,主要结果是利用局部群化的观点给出了概率测度卷积幂弱收敛的一个充分条件。
The main result is that we get a sufficient condition for the weak convergence of convolution powers of probability measures, by using the method of local grouplization.
研究结果表明,1964-1992年,中国人口空间分布呈现比较弱的条件收敛性;1992-2003年,中国人口空间分布则存在着明显的区域发散现象。
The result shows that the population distribution of China has a weak conditional convergence from 1964 to 1992, but it shows a regional divergence from 1992 to 2003.
通过对可行域定义新的拟锥条件,给出相应同伦方程,并证明此同伦算法在此拟锥条件下具有全局收敛性。
We defined the new quasi-cone condition, established the homotopy equation and proved the global convergence of this homotopy method.
本文针对一类具有随机状态转移概率的异步大系统,研究了该类异步大系统的随机收敛性及随机稳定性条件。
In this paper we study the stochastic stability and convergence conditions of a class of asynchronous large_scale systems with random state transition.
在适当的条件下我们将证明此方法的全局收敛性和超线性收敛性。
We prove that the method possesses the global and superlinear convergence under suitable conditions.
在较为温和的条件下,利用宽松的非精确线搜索条件得到全局收敛性结果,同时数值实验表明了算法的有效性。
Underan inexact line search condition and some other mild conditions, the global convergence was established. Preliminary numerical results show that the proposed method is promsing.
在保费收入可以改变的条件下,利用下鞅的收敛性,得到了破产概率的一个上界。
Under the condition of changing premium, the upbound of ruin probability was obtained by sub-martingale property.
在适当的假设条件下,我们证明了算法具有全局收敛性和超线性收敛性。
Under mild conditions, we establish the global and superlinear convergence results for the method.
文中给出了算法及收敛性、最优性条件、计算实施的若干建议,以及计算实例。
The algorithm and its convergence, optimization condition, some suggestions about the computation, and the examples are given.
在适当的条件下,证明了该完全广义强非线性拟变分包含解的存在性及唯一性,并且得到了迭代算法的收敛性和几乎稳定性。
Under suitable conditions, the existence and uniqueness of solutions of the that inclusion and the convergence and almost stability of the sequence generated by the iterative al.
本文针对一般非线性系统,在渐近稳定的条件下,得到了完全系统的周期解的存在性、唯一性及收敛性。
In this paper, we obtain the existence, uniqueness and the convergence of a periodic solution of the full system for general nonlinear systems under asymptotically stable conditions.
在详细地分析了系统误差信号的局部收敛性的基础上,推导出了系统误差局部收敛的充分条件。
Based on the detailed analysis of the local convergence of the system's error signals, the sufficient condition of the system error's local convergence is derived.
在已有的基础上探讨了它的半局部收敛性,利用强函数原理,在一定的条件下给出并证明不精确牛顿法的半局部收敛性。
There have many papers for its local convergence, This paper probes into the semi-local convergence using a majorant function principle on some weak condition.
在目标函数为一致凸函数的假设条件下,证明了LRKOPT方法的具有全局收敛和局部超线性收敛性。
Under the assumption condition of taking target function as an uniform convex function. We have proved that the LRKOPT has the global convergence and partial superlinear convergence.
在目标函数为一致凸函数的假设条件下,证明了LRKOPT方法的具有全局收敛和局部超线性收敛性。
Under the assumption condition of taking target function as an uniform convex function. We have proved that the LRKOPT has the global convergence and partial superlinear convergence.
应用推荐