研究和分析了迭代优化算法的收敛性。
探讨了管道三通塑性失效有限元分析中的建模技术,包括变形参量选取,网格收敛性研究等。
The finite element analysis techniques and building model approach, including the mesh convergence study and the selection of deformation parameters etc.
分析了此守恒重映方法的收敛性与守恒性,研究了积分控制体对速度计算的影响。
Further, the convergence and conservation of this remapping method are analyzed, and the influence of the integral control system to calculate velocity is studied.
本文主要致力于支持向量机、近似支持向量机的学习算法研究,特征提取的数学模型与算法的改进及其应用,聚类分析算法的收敛性证明。
This paper's main works is that: learning algorithm studies of support vector machine, mathematical model and application about feature selection, convergence analysis of clustering algorithm.
研究了(2)型等参六面体元,分析了其收敛性并给出了最优插值误差估计。
The convergence of hexahedral isoparametric element of form (2) is analysed in this paper, then the optical interpolation error estimation of it is obtained.
本文在使用BP神经网络对自相关过程进行监控的基础之上,对隐层神经元数对于神经网络训练收敛性及识别率的影响进行分析研究。
In this research, various number of hidden nodes of neural network is studied to improve the training result and identification capability of BP neural network.
理论方面主要研究算法的模型,分析其收敛性和收敛速度以及控制参数对算法性能的影响等。
The theory part of ACO focuses on establishing the computation model of ACO, analyzing the convergence of ACO, etc.
如何从理论上对这些改进算法的性质(特别是收敛性)进行分析,成为神经网络领域的一个重要研究课题。
The theoretical analysis on the properties (especially the convergence) of these improved gradient algorithms is an important research domain of neural networks.
研究了一维线性标量守恒律初边值问题的弱解,分析了有限元方法的收敛性。
In this paper, a finite element method for linear scalar conservation laws is analyzed.
研究了一维线性标量守恒律初边值问题的弱解,分析了有限元方法的收敛性。
In this paper, a finite element method for linear scalar conservation laws is analyzed.
应用推荐