考虑不同因素的影响,建立了反应烧结碳化硅反应烧结过程的一组数学模型,它们可表述为一个拟线性的抛物型方程。
Several mathematical models for reaction process of reaction bonded silicon carbide are set up, which are quasi linear parabolic systems.
这是在拟线性偏好下的拐角解。
非线性系统的长期规则运动除了平衡点和周期解以外,概周期解,或有时表现为拟周期解也是一种长期规则运动。
Besides the equilibrium and periodic solution, the almost periodic solution, which sometimes appears as quasi-periodic solution, is also a long term regular motion of nonlinear system.
本文用单调性方法研究了一个拟线性抛物型方程系教反问题,得到了该反问题的唯一性与稳定性。
In the paper, author has studied the inverse problem about a class of quasi-linear partial differential equations of parabolic type by monotone method, proved uniqueness and stability.
讨论一类带有非线性边界条件的拟线性反应扩散方程组,给出了解整体存在的充分必要条件。
The necessary and sufficient conditions are discussed on the existence of global solutions for quasilinear reaction-diffusion systems with nonlinear boundary conditions.
拟译:这两条定律适用于任何复杂的线性电路。
Eg. These two laws govern even the most complex linear circuits.
根据一阶拟线性偏微分方程组的特征理论,讨论内弹道两相流方程组的类型。
Following the theory on characteristics of first order quasi-linear partial differential equations, classification of the balance equations for two-phase flow in interior ballistics is discussed.
研究一类半线性拟抛物方程的初边值问题。
Study the initial boundary value problem of semilinear pseudoparabolic equations.
研究具非线性耗散项的强迫拟线性波动方程的初值问题。
We consider the initial value problems of forced quasilinear wave equation with nonlinear dissipation.
本文讨论了一交通模型的一阶拟线性偏微分方程激波产生唯一性的条件并给了严格的证明。
A condition of a one-order quasilinear partial differential equation of a traffic model forming unique shock wave is given end proved.
在水平拟静态荷载作用下,分析了土体的非线性,桩土之间接触面的分离,桩的长宽比等因素,对单桩横向响应的重要影响。
In static loads, the significant effect of the nonlinear soil behavior, the pile-soil interface separation, and the pile slenderness and width on the response of a single pile are analyzed.
这个研究结果为利用拟线性近似方法实现稳定电流场的快速反演打下了基础。
This study laid a foundation for using pseudo-linear approximate method to realize the rapid inversion of stable current field.
可微非线性规划问题的线性化过程可以自然地推广到拟可微的情形。
The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case.
本文讨论描述流体在稀疏介质中流动规律的一类拟线性抛物型方程具有第三类非线性边界条件的初边值问题。
This dissertation is to discuss the laws of fluids in porous medium for original boundary value problem of some quasi-linear parabolic equations with the third type nonlinear boundary condition.
该算法对非线性区域的数据进行曲线拟和,在此基础上导出了一个简单的修正公式。
The data in nonlinear area are curve fitted first and then a simple correction formula is educed.
应用拟牛顿算法求解非线性规划问题的增广拉格朗日函数,并给出了相应的拟牛顿公式。
The quasi-Newton method was applied to solving the augmented Lagrangian function of nonlinear programming problems. Further, the quasi-Newton formula was given.
本文采用非线性分析方法,研究生物种群动力学中一类拟线性抛物系统,得到解的整体存在性。
In this paper, using the methods in nonlinear analysis, this present paper, studies the quasilinear parabolic systems in population dynamics, and obtained the existence of the global solution.
但目前的特征有限元方法大多是对拟线性标量方程给出。
However, the mostly existed characteristic methods are the schemes for the quasilinear scalar equations.
在适当的条件下,证明了该完全广义强非线性拟变分包含解的存在性及唯一性,并且得到了迭代算法的收敛性和几乎稳定性。
Under suitable conditions, the existence and uniqueness of solutions of the that inclusion and the convergence and almost stability of the sequence generated by the iterative al.
本文通过理论推导,证明在反应动力学常微分方程参数估值中所采用的拟线性化法在本质上仍然属于高斯—牛顿法的范畴。
This paper proves that the quasilinearization method for parameter estimation of ordinary differential equation in chemical reaction kinetics essentially belongs to the region of Gauss-Newton method.
根据薄壳非线性动力学理论,用拟壳法给出扁球面网壳的非线性动力学控制方程。
According to nonlinear dynamical theory of shallow shell, nonlinear dynamical equations of the shallow spherical reticulated shell is obtained by the method of quasi-shell.
研究在外部区域中拟线性椭圆型方程,具有非线性边界条件的边值问题。
This paper aims at studying the boundary value for second order quasilinear elliptic equations with nonlinear boundary condition in exterior domain.
基于双曲型线性偏微分算子理论,引入并研究了具有非零初始值的拟线性双曲型方程的定解问题。
Based on theory of hyperbolic linear partial differential operator, the initial value problem of a kind of quasi-linear hyperbolic equations with non-zero initial values was introduced and studied.
数值结果展现了系统具有周期、拟周期、多解共存、跳跃、瞬态混沌等丰富复杂的非线性现象。
The numerical results reveal periodic, quasi-periodic, co-existing solutions, jumped, transient chaos of rich and complex nonlinear behaviors of the system.
第二章中,给出了一类二阶拟线性方程广义有限元解的渐近展式和超收敛结果。
In chapter two, the asymptotic expansion and superconvergence result of a class of second order quasilinear equation in generalized finite element space is presented.
根据薄壳非线性动力学理论,用拟壳法给出扁锥面网壳的非线性动力学控制方程。
Based on the nonlinear dynamical theory of shallow shell, the nonlinear dynamical equation of the shallow reticulated conical shell is obtained by the method of quasi-shell.
研究了由三个拟线性退化抛物型方程通过非线性项耦合而得到的一类拟线性退化抛物方程组解的性质。
The properties of solution to a class of quasilinear degenerate parabolic system coupled via three nonlinear diffusion equation are considered.
研究一类拟线性拟抛物型积分微分方程的初边值问题。
This paper studies the initial boundary value problem for a class of quasilinear pesudoparabolic integrodifferential equations.
本文以两个自变量的拟线性双曲型方程的古尔沙问题为例,应用反函数和积分不等式证明了等价积分方程组解的存在唯一性,同时给出了解的存在区域和已知参量的依赖关系。
In this paper, we show the domain of the existence of the solution on Goursat problem for quasi—linear hyperbolic equation and obtain the Theorem of the existence and uniqueness in above domain.
本文以两个自变量的拟线性双曲型方程的古尔沙问题为例,应用反函数和积分不等式证明了等价积分方程组解的存在唯一性,同时给出了解的存在区域和已知参量的依赖关系。
In this paper, we show the domain of the existence of the solution on Goursat problem for quasi—linear hyperbolic equation and obtain the Theorem of the existence and uniqueness in above domain.
应用推荐