提出了显拟凸函数的若干新性质。
Some new properties of explicitly quasiconvex functions are presented in this paper.
本文讨论了将凸函数的几个性质推广到拟凸函数的情形。
In this paper, several properties of convex function are generalized to the case of quasi convex function.
本文提出了中点拟凸函数的概念,在可测函数空间中,给出了中点拟凸函数拟凸的若干个充分条件。
The concept of the midpoint quasi-convex function is introduced, and some conditions are obtained to ensure that midpoint quasi-convex function is quasi-convex in the measurable function space.
在文献[1]中,杨新民教授分别介绍了拟凸函数、严格拟凸函数和强拟凸函数的一些特性,以及它们在一定条件下的性质。
Yang presented characterizations of quasiconvex functions, strictly quasiconvex functions, and strongly quasiconvex functions respectively under a certain set of conditions.
在局部连通集上定义了连通b -凸函数;在关于弧的右上导数的基础上,定义了连通- B伪凸,连通b -拟凸函数,推广了B -凸函数。
Then it expands the B-vex functions by defining connected pseudo B-vex and connected quasi B-vex functions in terms of right upper derivative with respect to an arc.
在局部连通集上定义了连通b -凸函数;在关于弧的右上导数的基础上,定义了连通- B伪凸,连通b -拟凸函数,推广了B -凸函数。
Then it expands the B-vex functions by defining connected pseudo B-vex and connected quasi B-vex functions in terms of right upper derivative with respect to an arc.
应用推荐