子流形高斯像的几何与拓扑是整体微分几何领域的重要研究课题之一。
It plays an important role in global differential geometry to study the geometric and topological properties of Gaussian image of submanifolds.
通过非流形造型与基于物理的造型相结合,从拓扑结构和几何信息两个方面扩大了模型的表示范围。
Representing objects by combining non manifold modeling and physically based modeling enlarges the representing domain for both topology and geometry.
提出了一个非流形结构的表示方法——粘合边结构,其数学基础是代数拓扑中的复形理论。
An identification edge structure is put forward to represent non manifold modeling, which is built on the concepts and methods of the complex and CW complex in algebraic topology.
讨论了有限维和无限维复J-辛空间上的拓扑,并证明了复J-辛空间的每一个完全J-Lagrangian子流形都是闭集。
We discuss topologies for complex J-symplectic spaces and prove that each complete J-Lagrangian submanifold of the complex J-symplectic spaces a closed set.
讨论了有限维和无限维复J-辛空间上的拓扑,并证明了复J-辛空间的每一个完全J-Lagrangian子流形都是闭集。
We discuss topologies for complex J-symplectic spaces and prove that each complete J-Lagrangian submanifold of the complex J-symplectic spaces a closed set.
应用推荐