有一个极值问题,也有关于拉格朗日乘数法的,链式法则也会有的,约束条件下偏导数当然不会漏掉。
Expect one about a min/max problem, something about Lagrange multipliers, something about the chain rule and something about constrained partial derivatives.
同时,证明了存在膛底边界运动和质量加入条件下的拉格朗日假设是比例膨胀假设的充分条件。
It is proved that the uniform density hypothesis is the sufficiency condition for the proportional expansion hypothesis under the existence of the breech boundary motion and the mass jet.
目的研究拉格朗日假设条件下随行装药的膛内压力分布规律。
Aim To study the rules governing pressure distribution of traveling charge under the condition of Lagrange hypothesis.
最后,结合拉格朗日微分中值定理改进了积分中值定理的条件和结论。
Finally, the condition and result of integral mean-value theorem are also improved combined with the Lagrange mean value theorem of differentials.
在离散对数困难问题的条件下,利用不经意多项式估值协议和拉格朗日插值多项式来解密s2(方案2)。
Under the condition of a discrete logarithm problem, S2 is decrypted by the OPE (Oblivious Polynomial Evaluation) protocol and Lagrange Interpolation Polynomial (scheme 2).
该算法充分利用拉格朗日松弛方法的特点,通过构建封闭图,对封闭图进行拉格朗日松弛求得满足条件的多播树。
The algorithm makes use of the characteristic of Lagrange relaxation method, and finds multicast tree satisfying constraint by constructing closure graph and making relaxation to this graph.
该算法利用拉格朗日算法将约束条件下的最优化问题进行转化,并采用对分算法加快搜索最优拉格朗日乘子的收敛速度。
Lagrange solution is employed to convert the constrained optimization problem and bisection method is used to reach a fast convergence in searching for the optimize Lagrange multiplier.
本文利用可视原则对不连续介质边界条件等效处理,通过一种更简便的拉格朗日法施加不连续边界以及本质边界条件。
This paper treated discontinuous medium boundary condition by using visual principle and through a more convenient method of Lagrange multipliers method.
当位移和动量的拉格朗日多项式近似阶数满足一定条件时,可以自然导出保辛算法的不动点格式。
A fixed point iteration formula can be derived when the order of the approximate polynomials of displacements and momentum satisfy some certain conditions.
对最适化条件、拉格朗日乘数理论以及对偶理论的综合论述,以及在控制、通信、动力系统和资源分配问题上的应用。
Comprehensive treatment of optimality conditions, Lagrange multiplier theory, and duality theory. Applications drawn from control, communications, power systems, and resource allocation problems.
对最适化条件、拉格朗日乘数理论以及对偶理论的综合论述,以及在控制、通信、动力系统和资源分配问题上的应用。
Comprehensive treatment of optimality conditions, Lagrange multiplier theory, and duality theory. Applications drawn from control, communications, power systems, and resource allocation problems.
应用推荐