抛物方程方法已经被广泛地应用于电磁波传播模型,并成为解决电磁波传播问题主要的工具。
The parabolic equation method has been used widely in the electromagnetic wave propagation model and becomes the main tool to resolve the problem of electromagnetic wave propagation.
该方法综合考虑真实环境因素的影响,采用了抛物方程方法,最后给出了雷达最大探测范围三维模型的建立和表现方法。
In this method, the effect of most real environment factors is considered with parabolic equation. Finally, the method of building and rendering 3d model of radar maximum detection range is given.
本文用单调性方法研究了一个拟线性抛物型方程系教反问题,得到了该反问题的唯一性与稳定性。
In the paper, author has studied the inverse problem about a class of quasi-linear partial differential equations of parabolic type by monotone method, proved uniqueness and stability.
本文采用引进积分的方法讨论一类半线性抛物型方程柯西问题解的唯一性与稳定性。
This paper by introducing integral deals with the uniqueness and stability of solution of the Cauchy problem to a form of semi-linear parabolic equation.
在一类适定性条件下,应用对数凸性方法证明了抛物方程终值问题具有平均稳定性。
Applying Logrithmic convex method, an average stability for the inverse parabolic problem with final observation is constructed under suitable correctness condition.
抛物线形缓坡方程波浪数学模型是进行大范围波浪计算的有效方法。
Wave mathematical model of parabolic gentle slope equation is an effective method for calculating waves of wide scope.
采用针尖的旋抛物面模型,给出了表面生成的负离子在针尖场中飞行的动力学方程,并用数值方法求解。
Adopting paraboloid model of tip surface, presented the dynamics equation of negative ion flight in tip field and solve it with numerical method.
研究二维非线性延迟抛物型微分方程交替方向差分方法。
The alternating direction difference method for the two-dimensional nonlinear delay parabolic differential equation is given.
提出了求解中立型抛物方程初边值问题的交替分组显式迭代方法。
The alternating group explicit iterative method for solving the neutral parabolic equation with initial boundary conditions is given.
该文从抛物化稳定性方程出发,采用从上游往下游递推的数值方法,对非平行边界层稳定性问题进行了数值计算和分析。
Based on parabolized stability equations, the stability of nonparallel boundary layer is calculated and analyzed by using recursion numerical method.
方法利用庞加莱截面、李雅普·诺夫指数、关联维等工具分别对抛物方程和椭圆方程的非线性动力学行为进行描述。
Methods Nonlinear dynamical behavior of both parabolic equation and elliptic equation were investigated by several tools such as Poincare section, Lyapunov exponent, and correlation dimension.
该方法是求解二维抛物型方程的有效方法,必将得到更广泛的应用。
So this method is effective in soluting two-dimensional parabolic equation and can be widely used.
第二章用上下解的方法来研究耦合半线性抛物方程组的动力学行为,给出了解的渐近行为。
The dynamics of coupled systems of semilinear parabolic equations are investigated using the method of upper and lower solutions. The asymptotic behavior of the solutio is given.
将波浪辐射应力与抛物型缓坡方程中的待求变量联系起来,提出了一种计算辐射应力的新方法,并用有限差分法对控制方程进行了数值求解。
A new method for the solution of wave radiation stresses is proposed by linking wave radiation stresses with the variables in the parabolic mild-slope equation.
本文中我们采用扩展混合有限元方法和混合体积元方法数值模拟了二阶拟线性抛物型积分微分方程和二阶拟线性抛物问题。
In this paper , we consider the Expanded Mixed Finite Element Method and mixed covolume method for the quasilinear parabolic integro-differential equation and quasilinear parabolic problem.
基于参数方程,推导出了CNC系统中抛物线插补的一种方法,并对该算法进行了实时性和误差分析。
Based on the parametric equation, an interpolation algorithm for parabola in CNC system is proposed, interpolation time and error are analyzed.
第一章研究了一类二阶抛物型方程组的一种新数值方法-再生核函数法。
In Chapter One, a new method of approximating the solution of second-order parabolic system using reproducing kernel function is devised.
主要运用能量方法及稳定集和不稳定集的观点,研究一类半线性抛物方程的整体解和局部解的存在性及爆破问题。
In this paper, we are concerned with the existence of global solutions or local solutions and blowup of one kind of semilinear heat equation.
应用上、下解方法证明非线性退缩抛物型方程组初边值问题弱解的存在唯一性。
Thfi existence and uniqueness theorems of weak solutions of initial-boundary value problems for nonlinear degenerate parabolic systems were established by lower-upper solution method.
采用极为有效的抛物化稳定性方程(PSE)方法研究边界层的非平行稳定性。
A new method of the parabolic stability equations (PSE) is used to study the nonparallelism of the boundary layer stability.
本文对一类非线性抛物型方程提出对称修正有限体积元方法,给出能量模最优阶误差估计,并证明了对称修正有限体积元方法的解与一般有限体积元方法的解之差是一个更高阶项。
In this paper, we present a kind of symmetric modified finite volume element method for nonlinear parabolic problems, and give the optimal order energy norm error estimates for full discrete schemes.
就一类典型的抛物型问题——热传导方程,研究矩形网格上质量集中有限元方法的有关性质。
In this paper, the exact solution and approximate solution of the boundary control problem for a class of the heat-conduction equation are given.
本文讨论了解抛物型方程的分组显式(age)方法,给出了该法和几种分数步长法的实验模型的数值比较结果。
In this paper, we discuss the method of Alternating Group Explicit (AGE) for solving 2-d parabolic equation, and give out the results of AGE method comparing with several fractional step methods.
本文运用正则化方法证明了一类退化抛物方程解的存在唯一性,讨论了解的全局存在性与爆破,并在一定的初值条件下得到了解的爆破速率。
In this paper, we establish the local existence and uniqueness of the solution by using regularization method. We also obtain the global existence and nonexistence. Finally, we get the blow-up rate.
本文运用正则化方法证明了一类退化抛物方程解的存在唯一性,讨论了解的全局存在性与爆破,并在一定的初值条件下得到了解的爆破速率。
In this paper, we establish the local existence and uniqueness of the solution by using regularization method. We also obtain the global existence and nonexistence. Finally, we get the blow-up rate.
应用推荐