采用矩阵光学方法研究了高斯光束通过非线性梯度折射率透镜的传输特性。
By using the matrix optics method, the propagation properties of Gaussian beams through a nonlinear gradient-index lens are studied.
该方法已用于光电图文扫描仪中变折射率透镜阵列的设计及测量,并获得了满意的结果。
This method has been used in the design and measurement of imaging system of optical-electronic scanner and satisfactory results have been obtained.
这种设计方法不仅对于单片轴向梯度折射率透镜,而且对于同时包括均匀介质元件的光学系统也是很方便的。
The use of the method is not limited to simple lenses with gradient indices. It can also be used conveniently in the design of systems having homogeneous-medium elements.
目前渐变折射率透镜的应用,通常都采用其主轴就是光线传播的光轴(横向应用)的形式,未见主轴垂直光轴应用的纵向应用分析说明。
The application of GRIN rod lens is usually used with its core as optical axis, this is transverse application, and any analyze for vertical application is not seen.
本文根据光线轨迹方程,讨论一种等折射率面为指数型变化的梯度折射率纤维透镜的成象特性。
The imaging characteristics of a GRIN fiber lens with exponential variation of the constant-index surfaces are discussed based on the ray paths equations.
本文导出了高斯光束通过非线性抛物形梯度折射率棒透镜的变换公式。
The transformation formulae of Gaussian beams through a nonlinear parabolic graded index rod lens are derived.
本文研究一类抛物型发散梯度折射率棒透镜中高斯光束的传播。
Gaussian beam propagation through a kind of parabolic divergent GRIN rod lenses is studied.
球对称梯度折射率微球透镜具有体积小、光路短、外形易加工、使用易调整,且无螺旋光线、像差小等优越性能。
The spherical gradient refractive index micro-lens with small volume and short optical path can be easily shaped and conveniently adjusted, and has no spiral rays and low spherical aberration.
把激光棒等效为梯度折射率棒,得到了新的热透镜焦距公式。
Based on that the laser rod is equivalent to gradient index rod (GRIN), a new thermal lens focal length expression was achieved.
提出了一种测定正、负透镜折射率的简单方法。
In this paper, a simple method for measure the refractive index of the thin lenses is presented.
严格的数值计算结果表明:两类透镜的纵、横向球差都随折射率梯度的增强而减小。
The accurate expressions to calculate the aberration for two sorts of lens decrease on the increase of gradient index.
与衍射效应产生的色散相比,透镜本身的折射率色散很小。
The dispersion caused from the chromatic aberrations of lens is smaller than that from diffraction effects of it.
本文采用矩阵光学的方法,分析了高斯光束经球端面抛物型梯度折射率棒透镜的传播与变换特性。
Based on the matrix optics, the propagation and transformation characteristics of Gaussian beam through a parabolic gradient-index rod with the spherical end surfaces are analyzed.
给出了一种利用透镜的球面反射像测量薄透镜的材料折射率的方法。
A method of surveying the index of refraction of thin lens material with the help of images made by spherical reflection is given.
本文用变分法以及ABCD定律,导出了锥形发散梯度折射率纤维透镜新的成象公式。
In tills paper, a new imaging formula for a conical defocusing GRIN fiber lens is derived by using the variational method and the ABCD law.
制备了自聚焦透镜的基础玻璃,对其透过率进行了测试,并对由这种玻璃制成的梯度折射率(GRIN)棒的折射率分布进行了分析。
The test on its optical transmittance was conducted, and analysis of the refractive index profile of a gradient index (GRIN) rod made of the base glass was performed.
根据变分法和ABCD定律,导出了非线性锥形梯度折射率棒透镜中高斯光束的成像公式。
Imaging formulas of Gaussian beams in nonlinear conical GRIN rod lenses are derived from the variational method and the ABCD law.
梯度折射率球透镜是一种折射率以球心为对称中心,并沿球半径方向分布的球型光学元件。
GRIN ball lens is a spherical optical element with refractive index is symmetric around a spherical point and varies in spherical radius direction.
自聚焦透镜与多模光纤的折射率分布都遵从平方律分布,基于这个事实,进行了以多模光纤生产工艺制造微型准直透镜的研究和设计。
Based on this fact, the research and design of micro align lens which is fabricated by means of multimode fiber fabrication techniques is carried out.
第二章主要从理论方面研究梯度折射率球透镜的折射率和光线轨迹。
In Chapter 2, the refractive index distribution and ray trajectory of GRIN ball lens are studied in theory.
本文研究高斯光束经抛物形梯度折射率纤维透镜的传播。
Gaussian beam propagation through a parabolic GRIN lens is studied.
所述封壳具有内透镜以及外透镜,所述内透镜的折射率小于所 述外透镜的折射率,并且在某些情况下为所述外透镜折射率的70%到 80%。
The encapsulant includes an inner lens and an outer lens, the inner lens having a refractive index less than, and in some cases about 70 to 80% of, the refractive index of the outer lens.
所述封壳具有内透镜以及外透镜,所述内透镜的折射率小于所 述外透镜的折射率,并且在某些情况下为所述外透镜折射率的70%到 80%。
The encapsulant includes an inner lens and an outer lens, the inner lens having a refractive index less than, and in some cases about 70 to 80% of, the refractive index of the outer lens.
应用推荐