采用扩展卡尔曼滤波方法设计了导航滤波器。
The navigation filter was designed using extended Kalman filtering technique.
针对该问题,本文基于扩展卡尔曼滤波方法提出了一种准最佳的GPS载波跟踪环结构设计方案。
Aiming at this problem, a new quasi-optimal structure of GPS carrier tracking loop based on extended Kalman filtering is proposed in this dissertation.
本文提出了一种利用扩展卡尔曼滤波器算法来估计BLDCM的转速和位置的方法。
A novel method for speed and rotor position estimation of BLDCM, which applies extend Kalman filter (EKF), is presented in this paper.
为了进一步提高目标跟踪的性能,采用一种新的建议分布构造方法,即利用状态分割技术和平行扩展卡尔曼滤波技术构造建议分布。
To improve the performance of object tracking, a particle filter algorithm was proposed which(uses) state partition technique and parallel extended kalman filter to construct proposal distribution.
提出了采用扩展卡尔曼滤波器估计入射波参数(入射角度和入射功率)的方法。
A method for estimating the parameters of incident wave Angle and incident power by the use of the extended kalman filter is proposed.
通过适当的选取图像特征,实现了摄像机工作空间运动目标跟踪的视觉伺服任务,并采用扩展卡尔曼滤波控制方法完成机器人视觉伺服控制。
Floating object tracking in the whole working space of a camera can be obtained through selecting image features, and Kalman filtering control was adopted to realize visual servo control of robot.
以人脸肤色模型为基础,结合目标形状特征识别方法,并用扩展卡尔曼滤波估计目标运动轨迹,实现基于肤色的人脸实时跟踪鲁棒方法。
The face motion could be estimated by using face skin color model integrated with feature based object recognition technique and extended Kalman filter.
综合泄漏流量的有限元计算结果与扩展卡尔曼滤波器的估计结果,与实测结果相比较,进一步完善理论分析方法。
The theoretical analysis is verified and improved by comparing the results of FEM calculation and EKF estimation with experimental measurement.
由于扩展卡尔曼滤波必须假定噪声服从高斯分布,若用于复杂非线性系统,其估计精度不甚理想。粒子滤波对噪声类型没有限制,正在成为非线性系统状态估计的有效近似方法。
Because EKF must assume that the noise is subject to Gaussian distribution, the estimate accuracy is not so good if it is used to estimate the state of complicated nonlinear system.
由于扩展卡尔曼滤波必须假定噪声服从高斯分布,若用于复杂非线性系统,其估计精度不甚理想。粒子滤波对噪声类型没有限制,正在成为非线性系统状态估计的有效近似方法。
Because EKF must assume that the noise is subject to Gaussian distribution, the estimate accuracy is not so good if it is used to estimate the state of complicated nonlinear system.
应用推荐