结果表明,即使光功率密度很大,我们公式的精度仍很高。
It is shown that the ac-curacy of our formulas is still very high even if the optical power density is large.
我们建立了一套描述聚丁二炔晶体中的三阶非线性光学过程的数学公式。
We derived a set of mathematical formulas for describing the third-order nonlinear optical process in polydiacetylene crystals.
好的,我们如何证明这个公式?
但我们看到的这些公式全都是适用的。
But we are seeing all of these formulas all fitting together.
这就是我们怎样得到这一公式的,有问题吗?
我们提出并讨论了模式演化对查询公式的影响。
We present and discuss the impact of schema evolution on query formulation.
那生后即是死这个事实-,有没有在这两者间产生任何相互影响,也需要被增加到我们的公式中来-,要增加到混合中来?
Does the fact that death follows life-- does that produce any interaction effects between the two, which need to be added into our formula-- ? added into the mix as well?
我们详细讨论了模式演化对验证、查询公式和结果的影响。
We discussed the impact of schema evolution on validation, query formulation, and results in detail.
关于做功,我们有两个公式。
因为在这一点,我们没有一个确切的长度公式。
So, we don't actually have a formula for the length at this point.
在课程的最后,我们看到一个公式。
我们将使用SQL查询公式指定“动态”的分类,而不使用消息自己的分类。
We will assign "dynamic" categories, using the SQL Query formula, rather than use the categories in the messages themselves.
看到了吗?,又是我们最爱的那个公式。
当然,我们已经见到了一些别的近似公式。
Well, of course, we've seen other approximation formulas and so on.
下周我们从变量变化的观点,来看证明这个公式。
We will also see another proof of this formula, using changes of variables, next week.
转换旋转矩阵中要素的公式,这里我们可以发现简洁和紧促清晰可见。
Formula of an element in the shift and rotation matrix. Simplicity and compactness are clearly visible.
我们有公式来计算当前值,并且这些公式众所周知。
We have formulas for these present values and these formulas are well known.
所以我们得到了两个公式,它们和我展示这两个,很类似。
So we came up with two formulas, which are similar to the two that I'm showing here.
由于没有任何的逻辑性,月代码是公式中最麻烦的部分——我们只能死记硬背了。
The month codes are one of the formula’s most troublesome parts, since they don’t follow a clear logic.
所以我这里要说一下,你也可以使用梯度,或者其他的公式,到目前我们只是学了这些新的记号方式。
So, yes, and I should say, of course you can also use the gradient and other things like approximation formulas and so on and so far, it's just notation.
我们已经很熟悉它的公式了。
那么,不管我们要考虑什么样的形式电荷,我们都必须依靠这个公式,它很容易理解。
So, when we think about any type of formal charges, we have to assign these based on a formula here, which is very easy to follow.
不考虑这些特殊的公式,我们已经学过两个很有用的公式。
OK, now, besides these specific formulas, we've seen two general formulas that are also useful.
这样,我们的公式就稍微简单了一点。
我们将频繁使用,一些我们,相当熟悉的公式。
We're going to use, very heavily, the equations that you see here that are so familiar with us.
大家需要记住这些公式,让我们做一道例题。
OK, so these are just formulas to remember so, OK, let's do an example.
我们可以看这个公式。
苏先生向BBC新闻记者解释道:“非常有趣,通过一些代数处理,我们的公式就能够跳跃式的计算PI值了;换句话,它允许计算pi的具体数位”。
"Interestingly, by some algebraic manipulations, (our) formula can compute PI with some bits skipped; in other words, it allows computing specific bits of PI," Mr Sze explained to BBC News.
那么,使用格林公式,我们去计算二重积分。
So, using Green's theorem, the way we'll do it is I will, instead, compute a double integral.
因此我们使用Post -Open公式计算出来的LookupValue字段,通过单个查找来读取九个字段。
So we use the LookupValue field calculated by the Post-Open formula to read nine fields with a single lookup.
应用推荐