通过建立二次型与对称双线性函数之间的对应关系,在双线性函数的概念下讨论二次型化标准型的问题,最后给出惯性定理的一个证明。
In this paper, we use the theory of symmetric bilinear function to solve problems of quadratic form, and finally give a proof of the inertia theorem.
笔者经过必要的推导得出结论:动能定理与惯性参考系的选取无关。
The author concludes by necessary inference that kinetic energy law is irrelevant to the selection of inertia reference system.
介绍了在非惯性系中建立动力学方程的方法,惯性系中拉格朗日方程在非惯性系中的转换形式,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。
Recent trends in the Lagrange equation's conversion and form from inertial system to non-inertial system, the application of energy theorem, energy conservation law, etc. are introduced.
本文取得如下成果:借助矢量法、约束方程和动能定理分别构造出机械手的位置逆解模型、速度雅克比矩阵、质量惯性矩阵。
With the aid of vector method, constraint equation, kinetic energy consideration, the inverse position model, Jacobian matrix and mass matrix have been developed.
运用质心运动定理,分析了质点在可自由移动的凹曲面上滑下时,质点对惯性系的运动轨迹方程。
The possible tracks of a particle BXm_(2), sliding down along a free movable concave surface with the mass m_(1) are analyzed.
运用质心运动定理,分析了质点在可自由移动的凹曲面上滑下时,质点对惯性系的运动轨迹方程。
The possible tracks of a particle BXm_(2), sliding down along a free movable concave surface with the mass m_(1) are analyzed.
应用推荐