本文简要地介绍与分析了变位系数的一般选取方法即试算法与微分逼近法。
This paper gives a brief description and analysis of two general methods of selectingcorrection factors, those are, by cut and trial and by differential approximation.
分析了光流计算中产生时域微分估计误差的各种因素,提出了光流的逐次逼近计算模型。
The factors, which introduce the error of temporal differential estimation are, analyzed. The successive approximation calculation model for the optical flow estimation is put forward.
本文用多层前向神经网络求解该非线性偏微分方程,从而逼近非线性系统的中心流形。
In this paper, multi-layer feedforward neural networks are used to solve the nonlinear partial differential equation, and approach the centre manifold of the nonlinear system.
提出了一种求解一类非齐次线性常微分方程的精细积分方法,通过该方法可以得到逼近计算机精度的结果。
Precise integration method for a kind of non-homogeneous linear ordinary differential equations is presented. This method can give precise numerical results approaching the exact solution.
讨论了椭圆型偏微分方程内边界问题的数值逼近。
It is discussed that the numerical approximation of interface problems for elliptic partial differential equations.
介绍了一类具有跳-扩散参数的随机微分方程的数值逼近方法。
Euler approximation is introduced for a broad class of jump-diffusion equations in this paper.
对三维波动方程做单程波分解,给出了用低阶偏微分方程组逼近上行波方程的2种高阶近似表达式。
This paper performs one-way wave decomposition for 3d wave equation, and 2 kinds of high approximation of up-going wave equation in low order differential equation system are derived.
关于双曲型偏微分方程式差分逼近的双边值问题的G.K.S。稳定性。
The G. K. S. Stability of the Hyperbolic Difference Approximation with Two Boundaries Initial-Value Problems.
仿真结果表明,用本文提出的简化模型能较好地逼近基于偏微分方程的严格模型,且结构简单,易于应用。
Simulation results show that the simplified model provided by this method can satisfactorily imitate rigorous model in addition to its simple structure and feasibility for on line applications.
第一节介绍了三次矩阵样条函数方法和四次矩阵样条函数方法逼近一阶矩阵线性微分方程的数值解。
Section I describes the numerical solution of first order matrix linear differential equation using the cubic matrix spline function and quartic matrix spline function.
第二节介绍用三次矩阵样条函数方法逼近一阶矩阵非线性微分方程的数值解。
Section II describes the numerical solution of first-order matrix differential non-linear equation using the cubic matrix spline function.
第二节介绍用三次矩阵样条函数方法逼近一阶矩阵非线性微分方程的数值解。
Section II describes the numerical solution of first-order matrix differential non-linear equation using the cubic matrix spline function.
应用推荐